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A Data and Facts

A.1 Data Extraction, Cleaning, and Coverage

The main source of the data for financial variables, ownership, and other firm characteristics is the Orbis
Historic Disk Product (Bureau van Dijk, 2017), which links multiple vintages of Orbis products through
firm identifiers and avoids some issues frequently arising in combining data vintages, as explained in
Kalemli-Ozcan et al. (2019). The following describes my procedures for preparing the data, which largely
follow those in Cravino and Levchenko (2017).

Financial data. I extract the financial data over 1996-2016 from the Historic Disk. The data are at
firm identifier-year level. Each firm identifier represents a unique legal identity, possibly owned by an-
other firm, an individual, or a family. I use sales (turnover) as the main measure of production and
use value added for robustness. The initial extraction contains all firms with non-missing sales infor-
mation for at least one year over the entire period. In a given year, firms might have multiple values
of reported sales from different sources (local registry, annual report, or others), for consolidated or un-
consolidated accounts. When different sources co-exist, I take local registry over other sources as it is
likely more accurate. Consolidated account might include sales of other firms in the same conglomer-
ate. For all analysis involving intensive margin measures of activities (i.e., sales and value added), I
use only values reported in unconsolidated accounts and drop firms whose reporting is done solely in
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consolidated accounts; for analysis focusing on the extensive margin (i.e., whether an MNC operates in
a host), I keep the latter group of firms. The extracted data include 58 million unique firm identifiers and
196 million identifier-year observations, among which 168 millions have non-missing sales data from
unconsolidated accounts.

Due to expanding coverage, the representation of the sample varies over time. Table A.1 reports
aggregate statistics of the raw data for 2013.1 Column 1 reports the ratio between the total sales of
firms and the GDP of the country, which is well above 0.8 for most countries.2 For empirical analysis,
relatively low coverage in some countries does not pose a threat because systematic variations in sample
representation will be absorbed by fixed effects; in quantification, however, I will need to calculate the
overall foreign shares in R&D and production, in which case low coverage could lead to biases. I explain
how foreign shares are calculated for these countries in Section C.1 of this appendix.

For a subset of countries, Eurostat provides total sales for ‘total business economy; repairs of comput-
ers, personal and household goods; except for financial and insurance activities,’ and for manufacturing.
I aggregate total sales of firms in these industries. Column 2 shows that the sample representation is rea-
sonably good in these countries. Column 3 shows similar levels of representation for manufacturing. In
both columns, the ratio is above 1 for some countries. One reason for this is that only the total sales of
firms are reported, so I treat all sales of a firm as from its reported core industry. To the extent that some
manufacturing firms also generate revenue from finance, I will not be able to exclude such revenue in
this calculation.

Columns 4 and 5 reproduce Columns 2 and 3, restricting to firms after the match with the patent
data. The matching process will be explained below, but in short, a firm is in the patenting data if one
of its affiliates, its parent, or its sibling affiliates within the same MNCs has filed a patent in any country.
Given that most firms do not own patents, the post-match sample is much smaller, but as Columns 4
and 5 show, it still accounts for a substantial share of the economy.

Ownership data. I extract a snapshot of shareholder information from the Historic Disk.3 For each
firm ID, I identify its global ultimate owner (GUO), the entity holding the majority control over the firm
ID. This definition requires the owner to either directly hold more than 50% of the shares of the affiliate
or—if the control is through other firms—hold more than 50% shares for every intermediate step along
the ownership chain. For firms not linked to a GUO, I assume that their GUO are themselves, which
practically means they are all domestic firms. To the extent that firms are more likely to have unreported
links to foreign firms than to domestic firms, my treatment underestimates the importance of MNCs.

Time-invariant firm characteristics. I define the home country and industry of an MNC to be the
country and industry of the GUO, respectively. When the GUO is an individual or a family, in which case
industry classification and country information are unavailable, I use instead the industry and location
of the largest affiliate (by sales) within the MNC. Note that because Table A.1 reports the aggregate
statistics by affiliate country, it is not impacted by this choice.

1Except for Canada, which have a large number of missing value in 2013. I calculate statistics for Canada based on the 2014
data. In empirical analysis I average the data over each five-year interval, missing values in one year does not matter materially.

2Aggregate sales could be higher than GDP because they count value added multiple times. The U.S. has a low coverage
because American firms report primarily their consolidated accounts and are thus excluded from this calculation.

3I measure the ownership information in 2016 and assume that it does not change throughout the sample period. For
regressions exploiting over-time variations, this measurement error, if any, likely attenuates results. This choice is motivated by
the limited coverage of earlier vintage of ownership data. However, all the empirical facts are robust if time-varying ownership
information is used. Details are available upon request.
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Table A.1: Coverage of the Firm-Level Data

Full sample Sample with patents

(1) (2) (3) (4) (5)
ISO total sales

GDP
total sales exc. finance

Eurostat total
mfg. sales

Eurostat mfg.
total sales exc. finance

Eurostat total
mfg. sales

Eurostat mfg.

AUS 2.97 - - - -
AUT 4.67 0.80 0.73 0.45 0.55
BEL 2.50 0.72 0.68 0.38 0.48
BGR 1.51 1.07 0.81 0.23 0.23
BRA 0.23 - - - -
CAN 1.49 - - - -
CHE 2.93 0.39 0.44 0.03 0.08
CHN 0.99 - - - -
CZE 2.19 0.96 0.90 0.42 0.59
DEU 1.95 0.71 0.63 0.36 0.45
DNK 2.00 0.61 0.59 0.31 0.49
ESP 1.53 0.92 1.03 0.43 0.64
EST 2.27 0.96 0.88 0.20 0.33
FIN 2.85 - - - -
FRA 1.88 0.81 0.80 0.42 0.56
GBR 0.83 0.26 0.31 0.11 0.21
GRC 0.96 0.64 0.78 0.08 0.08
HRV 1.13 0.93 1.13 0.14 0.20
HUN 2.20 1.10 0.99 0.40 0.51
IRL 4.33 0.83 0.56 0.61 0.34
ITA 2.02 0.87 0.97 0.31 0.46
JPN 1.91 - - - -
KOR 2.10 - - - -
LTU 1.34 0.68 0.48 0.08 0.14
LVA 1.82 0.99 1.04 0.10 0.18
MEX 0.31 - - - -
NLD 0.92 0.26 0.15 0.11 0.12
NOR 2.68 0.99 0.82 0.40 0.47
POL 1.04 0.74 0.93 0.30 0.55
PRT 1.60 0.92 0.79 0.30 0.27
ROU 0.90 0.98 0.95 0.32 0.44
RUS 1.62 - - - -
SVK 2.59 1.17 0.95 0.46 0.63
SVN 2.00 0.82 0.77 0.25 0.36
SWE 3.05 0.89 0.76 0.42 0.59
TUR 0.32 - 0.41 - 0.13
USA 0.02 - - - -

Average 1.83 0.81 0.75 0.29 0.37
Notes: This table reports aggregate statistics constructed from the firm-level data, divided by the corresponding official statistics. Columns 1
through 3 are for the full sample; Columns 4 and 5 are for firms in the patenting sample. ‘Eurostat Total’ refers to sales reported by Eurostat
in ‘total business economy; repairs of computers, personal and household goods; except financial and insurance activities.’ This definition
includes NACE sectors 05-63, 68-82, and 95. I calculate the sample counterpart of this statistics in Columns 2 and 4 by aggregating over firms
whose core industry is in these sectors. ‘Eurostat mfg.’ refers to total manufacturing sales from Eurostat. I calculate the sample counterpart of
this statistics in Columns 3 and 5 using only manufacturing firms. In Columns 2 and 3, a couple of countries have ratios above 1. This is likely
due to my treatment of the sales of multi-sector firms: only the total sales of a firm are reported, so I assume all sales is from the core industry.

Patent data and match to firms. I use patent-level data from PATSTAT Global (European Patent Of-
fice, 2018) to construct a measure of R&D. The database contains bibliographical data related to more
than 100 million patent documents from 90 patent issuing authorities, including all major national, re-
gional (e.g., the EPO), and global (e.g., the Patent Cooperative Treaty) patent offices.

I match individual patents from this database to their assignees (their owners) using a crosswalk
from the Orbis Intellectual Property Database. This crosswalk links patent applications to firms using a
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string matching algorithm based on the (historic and current) name, address, and industry classification
of the firm. A key step in the string matching underlying this crosswalk is the standardization of firm
names—due to typo or abbreviations, firms often appear in the database under different names, which
need to be harmonized before any match can be performed.4 In the setting of global patents, this stan-
dardization is more challenging because it needs to take into account the variations in spelling patterns
and common abbreviations across countries.5 The Orbis Intellectual Property Database builds on har-
monization efforts of several teams of researchers, respectively, the EPO, ECOOM at KU Lueven, and
the OECD (HAN database). In Section A.2 of this appendix, I perform a few validation exercises on the
quality of the match.

Having matched patents to firms, I further prepare the data as below:

1. De-duplication. Firms can, and often do, apply for multiple patents from different patent au-
thorities for protection of the same underlying invention. As all such patents need to establish a
common priority, i.e., the first applied patent on the invention, they can be identified as belonging
to the same patent family in the PATSTAT database. I keep a family as long as one of its many
patents is linked to a firm ID and, within each family, keep only one patent—the one with the most
complete inventor location information. This de-duplication process reduces the number of unique
patents to around 17 million, about two-thirds of the original number.

2. Excluding design patents. I exclude design patents and patents with unidentified types. Together,
the excluded patents account for about 2% of the sample. The resulting sample contains patents
from 90 patent offices, with the top 10 biggest patent offices accounting for 90% of the observations.
The USPTO patents account for about 20% of this sample.

3. Excluding patents without inventor location information. PATSTAT does not receive inventor
location information from the Japanese Patent office (JPO). Patents from other offices sometimes
also have missing inventor locations. I exclude patents from the JPO or otherwise have missing
inventor location information.6

Table A.2 summarizes the contribution of each patent office to the sample and the fraction of these
patents with non-missing inventor location information. Columns 1 and 2 are for all patents that
can be matched to a firm in the Orbis data (after steps 1 and 2 described above), dating back to the
early 20th century. U.S. and China are two biggest patent offices in this period, followed by Ger-
many, Korea, and the EPO. Column 2 reports the fraction of observations from each patent office
with non-missing inventor location. For six out of ten top patent authorities, inventor location is
available for more than 70% of patents.

Columns 3 and 4 reproduce Columns 1 and 2 for the period of my empirical analysis, 1996-2016.
With increasing patenting in China, the top 10 offices now account for 94% of the sample. Aside
from China, Australia, and Canada, all other major patent offices have close to universal avail-
ability of inventor location information. The increase in the availability of location information for

4For example, ’3M Company’ could appear in an application as any of the following: ’Minnesota Mining and Manufacturing
Company’, ’Minesota Mining and Manufacturing’ (with misspelled ‘Minnesota’), ’Minnesota Mining and Mfg.’, ’Minn. Mining
and Mfg.’, or ’MMM Co.’

5For example, in Portugal, part of Spain, Poland, and most French speaking countries, the legal form that best resembles
limited-liability corporations is ‘Société anonyme,’ abbreviated as S.A. or SA. Standardization should take into account such
country-specific abbreviations of legal forms. For example, the string ’SA’ in SAS Institute, an American company, should be
treated as part of the name but not an abbreviation for legal form; on the other hand, ’SA’ in the Spanish bank CaixaBank SA
should be treated as legal form.

6Note that such exclusion does not necessarily mean that the R&D underlying the patent is excluded from my database. As
long as one patent within a family has inventor location information, it will be preserved. This is an advantage of using the full
PATSTAT Global data—I am able to piece together information about an invention from its multiple patents. For example, if a
Japanese firm filed a patent in the U.S. and Japan at the same time, yet only the U.S. application reports inventor locations and
only the Japanese application is linked to a firm ID, this patent will still be in my sample.
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Table A.2: Sample Size and Availability of Inventor Location by Patenting Authority

All historic patents Patents filed in 1996-2016

Patent office % of obs. % with location % of obs % with location
(1) (2) (3) (4)

USA 22.35 73.37 18.00 100.00
CHN 21.11 21.33 30.84 21.22
GER 8.69 61.37 4.62 99.94
KOR 7.91 93.83 10.01 93.71
EPO 7.20 99.72 9.85 99.75
CAN 6.00 32.48 1.40 99.67
PCT 5.74 94.62 8.70 94.99
AUS 4.51 1.17 3.54 0.88
AUT 3.63 74.14 2.52 96.32
TWN 2.77 99.99 4.09 99.99
Others 10.08 57.26 6.43 75.74
Total 100.00 59.51 100.00 69.44

Notes: Columns 1 and 2 report information on all sample patents after Step 1 and 2 of the cleaning process and excluding JPO. Column 1
tabulates the fraction of patents in this sample from different patent offices. Column 2 reports, among all patents from an office, the fraction
with inventor location available. Columns 3 and 4 reproduce Columns 1 and 2 for patents filed first between 1996 and 2016, the period of my
empirical analysis.

most countries from Column 2 to Column 4 is likely due to changing reporting requirements at
the patent application stage. That the missing information is concentrated in a small number of
countries also reassures that these missing values are due to country-specific requirements, rather
than MNCs’ self selection into reporting.

4. Aggregating by firm ID-inventor country-year. I define the invention time of a patent as the
earliest filing year among all patents within the patent family. I then sum across all patents assigned
to a firm identifier in a given year to arrive at patent counts by firm identifier-inventor country-
year. Note that because MNCs can assign a patent to any of its affiliates regardless of where the
invention is performed and which patent office is involved, the result of this aggregation is not
necessarily accurate for locations of R&D at the affiliate (firm identifier) level.7 But after the final
step below, it will be accurate for location of R&D at the parent level.

5. Aggregating to parent firm-inventor country-year level. I aggregate the R&D output from the
previous step to parent firm-inventor country- year. I interpret inventor countries as the location
of R&D. For example, if an American firm has 30 patents with inventors located in Japan, I interpret
this as output of the American R&D center in Japan. I wish to emphasize that this assignment has
nothing to do with whether the patents are from the USPTO or JPO, or whether the assignee on
the patent is a U.S. affiliate in Japan or the headquarters in the U.S. The inferred location of R&D
depends solely on the reported addresses of the inventors.

A.2 Validating Patent Match Quality and Patent as a Measure of Offshore R&D

To validate the match quality of the patent-firm crosswalk, I perform two validation exercises.
Manual inspection of the match quality. In the first exercise, I manually inspect the owner of 100

patents selected randomly from the merged patent-firm data (at the end of Step 2 described above).
Figure A.1 shows the result from this check. These 100 patents have a total of 133 owners. 4 out of these
133 owners, colored gray, are not matched to a firm ID, which is likely due to the incomplete coverage of

7For example, Apple can apply for a patent invented entirely in California through its affiliate in China. It would be wrong
to infer from this assignment that Apple China performs R&D in California.
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the firm-level data. 2 firms, colored orange, are matched to a firm ID that cannot be matched to names.8

Among the remaining 127 owners, 126 are matched to correct firms, colored in either green or blue.
In the figure, green means the names from the Orbis database are sufficiently close to the names from
PATSTAT that it is clear that they are the same entity. Blue means that the names of the firms differ
between the two databases, but I was able to verify that the difference are entirely due to simple name
changes/re-organization/M&A. For example, the owner of the 6th patent in the figure changed its name
from DB Cargo to Railion Deutschland in 2003 and back to DB Cargo AG to reflect its shifting business
focuses. Such instances showcase the advantage of the Orbis database—with a database of historic firm
names and firm ownership network, it is able to identify cases where simple string matching would
miss.

In only 1 out of the 133 cases, colored red, the match is wrong. A patent by Huawei (the telecomm
equipment manufacturer) is assigned to Dinglong Culture. I examined the source of this mistake. It
turns out that Dinglong Culture, specialized in mining, was once named ‘Huawei ltd.’ At the time of
patent filing, it was located in Huawei Industrial Park (named after the telecomm manufacturer).9 This
mistake can only be avoided with manual inspection of every patent.

Correlation with R&D expenditures. In the second exercise, I compare patent-based measure of
invention to firm-level R&D expenditures in a small set of mostly listed global firms for which R&D
expenditures are available from 2013. To allow for lags between expenditure and patenting, I use the
average patent count between 2013 and 2016.

Table A.3 below reports the results. The first two columns use raw patent counts weighting patents
equally. Columns 3 and 4 weight patents by their influence, measured as the number of citations to them
(forward citation). All specifications include fixed effects for country and firms’ main industry (3-digit).
The results of the regressions suggest that patent invention is strongly correlated with R&D expenditures
and that the correlation is not driven by firm size. Despite the challenges discussed above in merging
global patents to global firms, the elasticities in our sample is in the same ballpark as estimates based
on the match between USPTO data and Compustat firms (see Griliches, 1990 and the references thereto).
This offers further assurance on the quality of the match.

Table A.3: Correlation between Patent Invention and R&D Expenditures

(1) (2) (3) (4)
raw count influence wgted

log (R&D expenditures) 0.775∗∗∗ 0.516∗∗∗ 0.904∗∗∗ 0.785∗∗∗

(0.027) (0.042) (0.034) (0.073)
log (employment) 0.382∗∗∗ 0.184∗∗

(0.053) (0.081)
Observations 5551 4010 5547 4008
Country and industry FE Yes Yes Yes Yes
Psudo R2 0.750 0.773 0.775 0.770

Notes: Specifications in this table regresses the logarithm of patent-based measures of firm invention on the logarithm of R&D expenditures
and of employment. The R&D and employment data is from 2013. Patenting measure is averaged over 2013 to 2016. All specifications are in
PPML and control for country and industry fixed effects. Robust standard errors in parenthesis. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.

8This is due to the change in firm ID between different vintages of the Orbis database. I verified manually that in the new
vintage of the Orbis crosswalk, these two patents are linked to the correct owner.

9The company changes its name to Dinglong after it went public through the acquisition of a shell company named ‘Ding-
long’. IPO is heavily regulated in China and going public through acquisition to circumvent red tape is not uncommon.

6



7



Figure A.1: Match Quality Check on 100 Random Applications
Note: This figure illustrates the match quality for the 133 owners of 100 randomly selected patents. The column titled id is the index for
these patents; application ID is these patents’ ID in the PATSTAT database; year refers to the year in which the patent application was made;
person_name refers to the name of the applicant from the PATSTAT database; person name-matched and bvdidnumber refers to the name and the
firm ID from the Orbis database a patent is matched to; core sector is the NACIS code for the main sector of a firm. Among these patents, only
one (the 48th patent) is matched to a wrong firm, indicated by red.
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Patents as a measure for offshore R&D. As discussed in Section 2.1, using patent data to measure
offshore R&D has three advantages: first, the universe of data are readily available at the firm level;
second, it is less subject to different definitions of ‘research and development’ between countries; third,
compared to affiliate R&D expenditures, the addresses of inventors are less likely to be manipulated by
MNCs for tax avoidance. I now provide direct evidence for this last advantage.

Panel A of Table A.4 below reports the share of activities by U.S. multinationals in tax havens, defined
according to Hines and Rice (1994). The first row is based on the public-use data from the BEA. It shows
that these countries account for 5.3% of employment, 8.7% of employee compensation, 17.1% of R&D
expenditures, and 48% of net income of all overseas affiliates of U.S. MNCs. In particular, the share of
employment and employee compensation are vastly overshadowed by both R&D expenditure and net
income, which is often interpreted as evidence of tax-avoidance activities.

The second row reports the share of patent invention by U.S. MNCs in these tax havens. When total
invention is measured by inventor locations, depending on whether patents are weighted by influence
(forward citation), tax haven accounts for about 6.7% or 8.25%, which fall between the share of employ-
ment and that of employee compensation in these countries. When measured by firm owners’ location,
however, the shares increase drastically, with the share of influence-weighted patents in these location
more than doubled.10 This is consistent with firms assigning intellectual property rights, especially high-
value ones, to affiliates in tax heavens to facilitate tax avoidance.

Table A.4: Activities in Tax Haven Countries

Panel A. Tax haven countries’ share of the activities of U.S. multinationals

Employment Employee compensation R&D Net income
5.26% 8.70% 17.09% 48.27

Patenting by inventor location Patenting by firm location

count influence weighted count influence weighted
6.71% 8.25% 11.51% 18.06%

Panel B. Tax haven countries’ share of world economy

GDP Population
0.2% 0.08%

Patenting by inventor location Patenting by firm locations

count influence weighted count influence weighted
1.50% 2.04% 2.25% 3.20%

Note: Panel A reports the share of U.S. multinational activities taking place in tax haven countries, defined according to Hines and Rice
(1994). Employment, employee compensation R&D, net income are from BEA public data. Patent based measures are authors’ calculation.
Panel B reports the share of tax haven countries in world GDP and patent invention (based on the location of the assignees versus inventors,
respectively).

Panel B report the share of world GDP, population, and patents in these tax haven countries. These
countries account for 0.2% of GDP and 0.08% of population. Their share in world patent invention mea-
sured using inventor locations is 1.5% (2.0% if patents are weighted). Importantly, switching from an
inventor-location based measure to a firm-location based measure increases both the weighted and the
unweighted share by 50%, consistent with the patterns documented in Panel A for U.S. firms

Table A.5 uses regressions to control for other country characteristics. The first two columns are at the
country level. The dependent variable is the difference between the logarithm of patent counts based on
firm locations and the logarithm of patent counts based on inventor locations. The regressions show that,
controlling for country size (population), TFP, and human capital index, firm location-based measures
inflate patent inventions in tax haven countries by 83% log point (75% log point if patents are weighted

10All of the patents ultimately belong to a U.S. multinational firms through a firm ownership network. Here I merely count
patent based on the location of the direct owners of patents reported in patent applications.
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Table A.5: Invention in Tax Heaven Countries: Firm- versus Inventor-based Measures

(1) (2) (3) (4)
dependent var: firm-based log patent counts minus inventor-based

country-level firm-level

unweighted. weighted unweighted weighted
tax heaven indicator 0.835∗∗∗ 0.753∗∗∗ 0.302∗∗∗ 0.376∗∗∗

(0.208) (0.252) (0.042) (0.054)
Observations 111 111 76956 76956
R2 0.328 0.217 0.303 0.294
Within R2 0.019 0.021
Country controls yes yes yes yes
Firm FE yes yes

Notes: Columns 1 and 2 are at the country level; the dependent variable is the logarithm of the number of patents granted to firms in a
country minus the logarithm of the number of patents with inventors located in that country. Columns 3 and 4 are at the firm level, with each
observation being a firm-host country combination; the dependent variable is the logarithm of the number of the patent granted to the affiliates
of a firm in a country minus the logarithm of the number of the firm’s patents with inventors being in that country. All specifications control
for country population, TFP, and human capital index; Columns 3 and 4 further control for firm fixed effects. Data include all patents from
1996-2016. Standard errors are clustered by country. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.

by influence). Columns 3 and 4 are at the firm level, with the dependent variable being the difference
between the logarithm of patent counts based on firm location and the logarithm of patent counts based
inventor locations. The regressions show that a similar pattern holds even within individual firms,
whether patents are weighted by citation or not.

Tables A.4 and A.5 demonstrate that an inventor-location-based measure of R&D can help alleviate
concerns about multinational firms strategically allocating R&D expenditures for tax avoidance.

Additional concerns on patent as a measure of R&D. A well-known drawback of using patent data
to measure R&D is that firms self select into patenting, which can introduces biases in the measure. I
now explain why this concern seems unlikely to bias either my reduced-form or quantitative results.

There are at least two types of selection, both of which are well recognized by the study of R&D using
patent data in closed-economy settings (Griliches, 1998): some R&D efforts might not result in patentable
outcomes; firms might choose not to patent a patentable R&D outcome. In the multinational setting
considered in this paper, the threat is that such selection might be correlated with the characteristics of
the firm or those of the host. For example, if more innovative firms are both more likely to engage in
offshore R&D and have a higher propensity to patent their inventions, my measure of offshore R&D
would be biased towards these firms.

An advantage of the multinational setting is that I will be able to flexibly control for firm and host
characteristics that likely determine the decision to patent an invention in ways that are infeasible in
closed-economy settings. Specifically, I control for firm-period fixed effects in all specifications, so any
selection at the firm level is absorbed and the coefficients are only identified off within-firm variations.
For Facts 1 and 2, where the selection concern is more relevant, I further control for affiliate fixed effects.
This will purge out the influence of any time-invariant host-specific factors.11

In addition to these two types of selection, in my setting there is another type of selection: firms
choose to patent inventions only in hosts in which they either have a manufacturing presence or the in-
tention to launch a product. This selection makes the interpretation of Fact 2 potentially problematic: the
observed colocation between production and patenting might be driven by such selection and therefore
has nothing to do with the friction in separating the two. Because my measure of R&D is based not on
which host country a patent is issued in, but on where the inventor of a patent is located, this concern
does not in itself lead to a bias. To the extent that such selection can affect the measured locations of in-

11Admittedly, there could be time-varying factors. In Fact 1, I control for two usual suspects, the IPR protection index and
R&D subsidies and show that they do not affect the main coefficient of interest. In Fact 2, since the variation exploited is
at affiliate level, I am able to control for host-industry-period fixed effects, which absorb all time-varying characteristics of a
country that might affect patenting in an industry.
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Figure A.2: Comparison Among Patents From Individual Patent Offices

Notes: The figure shows log bilateral offshore R&D measured using three major patent offices (EPO, USPTO, PCT) is closely correlated.

ventors, I address this concern in two ways. First, through the rich control of fixed effects, which absorb
all confounding factors that are specific to a host, an affiliate, or a firm. Second, I provide direct evidence
that such selection does not affect the measured offshore R&D below.

Specifically, if the selection of patent offices affect the measured offshore R&D, then we should see
that offshore R&D calculated based on data from different patent authorities differ significantly from one
another. Figure A.2 shows the exact opposite: bilateral offshore R&D shares measured using data from
the USPTO and two other major international patent offices, the PCT and the EPO, are highly correlated.
I conclude that differential selection into patenting in specific hosts do not lead to significant biases in
the measured offshore R&D.

Figure A.3: Aggregate and Bilateral Offshore R&D Measures: Patents v.s. Expenditures

(a) Aggregate Inward Offshore R&D Share
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(b) Log Bilateral Offshore R&D Share
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Notes: The left panel is the fraction of R&D in a country carried out by foreign firms, measured using two different sources: business enterprise
R&D expenditures (horizontal axis) and patents (vertical axis). The right panel plots the log of bilateral offshore R&D shares, in which each
dot represents a country pair.

In quantitative analysis, I will use the share of inventions in a host by foreign firms as an additional
input. For such aggregate shares, I will not be able to address the above concern through controls.
Instead, I show directly that my measure is closely correlated with the one based on R&D expenditures in
Figure A.3. In the left panel, the horizontal axis is calculated using business enterprise R&D expenditures
from the OECD; the vertical axis is the shares calculated based on the patent data, described above. The
figure shows a close mapping between the two measures, with a correlation of 0.83, despite that they
are from two independent sources.12 The right panel plots log bilateral offshore R&D shares measured

12The expenditures statistics are aggregated from firm-level surveys and other administrative data. It is possible that the
differences between the two measures are mostly driven by sampling differences. In fact, the correlation between my data and

11



using R&D expenditures and patents. Again, the two measures are highly correlated. The takeaway
from Figure A.3 is that even if one preferred to use R&D expenditures to construct foreign R&D shares,
my measure is a good proxy.

A.3 Sample Restriction and Descriptive Statistics

I describe in this subsection the sample of my analysis and the descriptive statistics.
Sample period. For best coverage of the financial data, I focus on 1996-2016. To reduce measurement

errors associated with patent counts (for example, firms might be continuously doing R&D but the patent
application might be discrete), I aggregate the sample into four five-year periods. Within each period, I
take the average values of patent and citation counts, and financial statistics.

Countries and their characteristics. I focus on a sample of 37 host countries (but include MNCs
whose parent are from other countries in empirical analysis). This sample restriction is made to be
consistent with the subsequent quantitative analysis. Specifically, for quantification I will use data on
manufacturing output and trade from the 2016 release of the World Intput Output Database (Timmer et
al., 2016). Among the 43 countries in this database, I exclude three countries with population below one
million, Cypress, Luxembourg, Malta; I exclude Taiwan, as World Bank and Penn World Table does not
report its economic statistics; finally, I exclude India and Indonesia due to their poor representation in
the Orbis financial database. This results in the 37 countries reported in Table A.1. All empirical patterns
remain virtually unchanged if I simply use all countries in the Orbis database.

I combine the firm-level data described previously with time-varying country characteristics. Con-
cretely, I obtain GDP, GDP per capita, and the human capital index from the PWT 9.0. (Feenstra et al.,
2016; see Feenstra et al., 2015 for descriptions); an updated version (Park, 2015) of the intellectual prop-
erty right index created in Park (2008); R&D subsidies and the number of researchers from the OECD
(OECD, 2018). All these variables are also averaged over each four-year period. I obtain bilateral dis-
tance measures from Mayer and Zignago (2011). Table A.6 summarizes these country characteristics for
the last period, 2011-2016.

Table A.6: Host Characteristics: Summary Statistics

Variable Obs Mean Std. Dev. Min Max
ln (GDP) 37 13.30 1.55 10.37 16.59
ln (GDP per capita) 37 13.30 1.55 10.37 16.59
Human capital idnex 37 3.24 0.38 2.29 3.72
ln (number of researchers) 32 11.38 1.48 8.61 15.07
R&D subsidies 36 0.13 0.12 -0.02 0.44
Intellectual property right index 33 4.31 0.33 3.59 4.88

Notes: This table reports characteristics of the 37 host countries in the sample, averaged over 2011-2016.

Structure of financial and R&D samples separately. In empirical analysis, I use the merged sample
between financial and R&D datasets. Section 2.2 presents descriptive data for the matched sample.
Tables A.7 gives an overview of these two datasets separately.

The left panel of Table A.7 summarizes the structure of the financial data. Columns 1 and 2 are
the number of unique firms and unique production affiliates in each period, respectively. The numbers
gradually increase as coverage of the database broadens, but Columns 1 and 2 track each other closely,
reflecting that the overwhelming majority of firms have only one production affiliate.

The right panel of Table A.7 is the structure of the R&D data. This sample is larger than reported
in Table 1 as it includes firms granted a patent but with no available financial information.13 The R&D

these statistics for offshore production, measured using sales in both sources, is also around 0.8.
13The statistics reported is after excluding firms classified as education institutions and governments, or firms with unknown
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Table A.7: Structures of Production and R&D Samples

Financial data R&D Data

Period # of unique firms # of aff. with positive sales # of unique firms # of R&D centers (baseline) # of R&D centers (Liberal)
1 3,615,341 3,643,392 118,953 112,217 140,344
2 7,992,947 8,050,202 138,792 133,432 164,173
3 13,814,682 13,906,270 161,114 158,297 191,442
4 49,264,872 49,389,390 136,323 136,694 162,139
Total 74,687,842 74,989,254 555,182 540,640 658,098
Unique firms 54,535,654 378,859

Notes: This table summarizes separately the coverage of financial and R&D data over time (before the two are merged).

sample does not registered as dramatic an expansion as the financial sample. This is unsurprising, as
PATSTAT covers close to the universe of world patents from the very beginning. In the fourth period,
on average, a firm has 1.189 R&D centers according to the liberal definition, and only 1.003 according to
the baseline definition.

A.4 Regression Evidence for Facts 1 to 3

In this subsection, I describe the regressions underlying Facts 1-3, and additional specifications that
demonstrate the robustness of the results.

Fact 1. The first fact investigates how affiliate invention intensity varies with host talent quality. My
specification is

y f oh,t = FE +−→γx ·
−→
X oh,t + ϵoh f ,t.

The outcome variable is the log ratio of patent invention over sales, for an affiliate in host h of firm
f from country o in period t. The explanatory variables

−→
X oh,t include the measure of host talent, the

human capital index from the Penn World Table, along with other controls. FE is fixed effects.
A concern in interpreting y f oht,t as the invention intensity of an affiliate is that it might pick up that

firms apply for more patents in more attractive markets. Note that in constructing y f oh,t, it is the number
of patents invented in country h, which could be granted by any authorities, rather than the number of
patents granted by the authority of country h, that is being counted. Selective patenting in more attrac-
tive hosts will thus not necessarily bias the measure. I include country fixed effects and time-varying
country characteristics to soak up remaining variations in the propensity of patenting across hosts. Re-
latedly, some firms patent their inventions more frequently than others. This source of heterogeneity
will be absorbed by firm-level fixed effects.

Table A.8 reports the results. The first column controls for firm-period fixed effects and four measures
of bilateral distance between the home and the host: geographic distance, and indicators for whether
countries o and h share an official language, are contiguous to each other, or have a colonial tie. This spec-
ification exploits within-firm, cross-host, variation, and finds significant positive correlation between the
invention intensity of an affiliate and the human capital index. The size and income of the host, on the
other hand, do not seems to be important.

Columns 2 adds affiliate fixed effects that absorb all invariant country characteristics. I further control
for the protection of intellectual property rights (IPR, Park, 2008) and R&D subsidies (OECD) of the
host, two policy measures likely correlated with R&D and patenting.14 The specification shows that an
improvement in host human capital over time is correlated with an increase in the patent sales ratio. In
terms of magnitude, a one standard deviation increase in the human capital index (≈ 0.38) more than
doubles the outcome variable. Column 3 further includes a narrower measure of talent, the number of
researchers in a country. An increase in this measure is positively correlated with the invention intensity

home countries—most likely individuals or families.
14Because changes in GDP and income are highly correlated, I include only one of them.
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Table A.8: Human Capital and Affiliate Invention Intensity

(1) (2) (3) (4)
Dependent variable: ln (patent/sales) R&D Indicator

human capital index 0.95∗∗∗ 3.013∗∗ 3.431∗∗ 0.181∗∗

(0.257) (1.365) (1.334) (0.076)
ln(GDP per capita) -0.273 -0.622 -0.710∗ 0.081∗∗∗

(0.258) (0.439) (0.350) (0.023)
IPR protection 0.563∗∗∗ 0.404∗∗ 0.020

(0.205) (0.176) (0.015)
R&D subsidies 0.508 0.572 0.011

(0.384) (0.403) (0.029)
ln (researchers) 0.421∗∗ 0.067∗∗∗

(0.172) (0.016)
ln(GDP) 0.077

(0.097)
tax haven indicator 0.069

(0.163)
log (sales) 0.004∗∗∗

(0.001)
Observations 20893 11803 11464 80253
R2 0.253 0.677 0.675 0.637
Within R2 0.029 0.010 0.015 0.005
Distance measures Y - - -
Firm-period FE Y Y Y Y
Affiliate FE - Y Y Y

Note: The outcome variable is log of the ratio between patent counts and affiliate sales. The explanatory variables are country characteristics.
Column 1 is a cross-sectional regression that controls for firm-period fixed effects and bilateral distance measures, including geographic dis-
tance and a set of dummies (see the text). Columns 2 through 4 control for time-invariant host characteristics through affiliate fixed effects.
Standard errors (in parenthesis) are clustered by host country and by firm. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01. Results from Columns 3 and 4
are visualized in Figure 2 of the main text.

of affiliates, but the coefficient for the human capital index barely changes, suggesting that a broader
interpretation of talent is warranted. Finally, Column 4 examines whether an improvement in human
capital is associated with the entry of foreign R&D centers through the extensive margin, controlling for
the sales of the affiliate. I find that both measures of talent are associated with entry.

Results from Columns 3 and 4 of this table are visualized in Figure 2 of the main text.
Fact 2. The second fact is on the colocation of invention and affiliate sales. The specification is:

y f h,t = FE + γR&D x f h,t +
−→γ dist ·

−→
dist f h,t + ϵ f h,t,

where f , h, t, indicates firm, host, and period, respectively. Variables y f h,t and x f h,t measure affiliate sales

and invention of firm f in host h.
−→
dist f h,t is a vector consisting of four measures of the average distance

between host h and all other countries in which firm f has an R&D center.
−→
dist f h,t is firm specific because

firms differ in their geographic presence. Coefficients γR&D and −→γ dist capture the colocation patterns.15

The OLS estimate of γR&D and −→γ dist might suffer from an omitted variable bias. For example, firms
might conduct both invention and production in hosts with a comparative advantage in their industry;
both activities might also grow in response to an expansion in the economy or market access of a host. To
rule out these factors, I include host-period, home-host, and host-industry fixed effects. I further control
for firm-period fixed effects. As discussed previously, these controls also help purge out systematic
variations in patenting propensities across firms and hosts, so x f h,t can be interpreted as R&D.

15Since the quantitative analysis will be based on a static model, I focus on the contemporaneous effect in this specification.
Including leads and lags of offshore R&D measures as additional explanatory variables result in positive and statistically
significant coefficients for contemporary and lagged offshore R&D, and small and insignificant coefficient for future offshore
R&D. Such dynamic results, available upon request, are also consistent with a colocation effect.
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Table A.9: Co-location of Invention and Affiliate Sales

(1) (2) (3) (4) (5) (6) (7)
Dependent var. aff. sales indicator ln (sales)

R&D Indicator f h,t 0.281∗∗∗ 1.164∗∗∗ 1.042∗∗∗

(0.003) (0.024) (0.026)
ln(patent) f h,t 0.331∗∗∗ 0.329∗∗∗ 0.205∗∗∗ 0.181∗∗∗

(0.012) (0.012) (0.044) (0.042)
ln (distance) f h,t -0.024 -0.328∗∗

(0.025) (0.144)
common language f h,t 0.220∗∗∗ 0.408

(0.051) (0.267)
contiguity f h,t 0.143∗∗∗ 0.224

(0.049) (0.235)
colonial tie f h,t 0.090∗∗ -0.563∗

(0.046) (0.306)
Observations 7494979 119659 19519 119503 19519 14090 8839
R2 0.704 0.495 0.572 0.496 0.572 0.969 0.963
Within R2 0.042 0.045 0.093 0.047 0.094 0.022 0.020
Firm-period FE Y Y Y Y Y Y Y
Host-period FE Y Y Y Y Y Y -
Home-host FE Y Y Y Y Y - -
Host-industry FE Y Y Y Y Y - -
Affiliate FE - - - - - Y Y
Host-industry-period FE - - - - - - Y

Note: Column 1 estimates the relationship between having an R&D center in a host and the probability of having an affiliate with sales in the
same host. Columns 2 through 7 estimate the relationship between having an R&D center (and the size of the R&D center) and affiliate sales
in the same host. Columns 4 and 5 also control for the average distance of a production facility to other countries in which the firm has an
R&D center. Industry effects are at two-digit level. Standard errors (in parenthesis) are clustered by firm. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
Results from the first three columns are visualized in Figure 4 of the main text.

Table A.9 reports the results. The first column focuses on the extensive margin and shows that having
an R&D center in a host increases the probability of having an affiliate with sales in the same country
by 0.28, or about ten times the mean value of the outcome variable (2.7%). Column 2 focuses on the
intensive margin of sales and finds that MNCs’ affiliate sales are on average 116% larger in hosts where
they have an R&D center. Column 3 uses log patent count as the explanatory variable. The sample size
is substantially smaller, but the result is qualitatively similar: sales are correlated with the number of
inventions at the affiliate level.

To explore whether R&D of the firm at other locations is correlated with the sales of an affiliate,
Columns 4 (5, respectively) include the average value of the four distance measures between h and all
countries in which firm f has an R&D center in the specification of Columns 2 (3, respectively). The dis-
tance coefficients, although not always statistically significant, are generally supportive of proximity to
sibling R&D centers having an effect. Importantly, the coefficients for R&D Indicator f h,t and ln(patent) f h,t
do not change much, underscoring the importance of co-location.

To ensure that the correlation is not due to idiosyncratic match quality between a firm and a host
in both R&D and production, Column 6 controls for affiliate fixed effects; to further rule out the effect
of changes in host economy that affects the entire industry, Column 7 adds host-industry-period fixed
effects. Both specifications find that as affiliates increase invention, their production also increase.16

A remaining concern is that the correlation can be driven by over-time changes in the idiosyncratic
match quality between a host and particular affiliates. Given that the estimate changes little with the
inclusion of host-industry-period fixed effects, it appears that the scope for such shocks to affect the

16Two remarks on the within-affiliate specification: First, when exploiting over-time variations, firms growing from a small
number of patents can have an extraordinary percentage growth rate. To avoid these firms having an outsized impact on the
estimate, I weight firms by the square root of their patent counts. Not weighting would result in an estimate of 0.06 (s/e= 0.014)
for Column 6 and an estimate of 0.09 (s/e= 0.02) for Column 7. Second, I do not include the average distance metrics as there
are not enough over-time changes to estimate them precisely. Including these variables will not impact the coefficient for
log(patent) materially.
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estimate is limited. Nevertheless, I adopt an alternative IV strategy to further address this concern, under
the following identifying assumption: controlling for host fixed effects and other time-varying host,
industry, and firm characteristics, changes in the R&D environment of a host—e.g., R&D subsidies and
the number of researchers—affect affiliate sales through affiliate R&D. The IV results, which is consistent
with findings from Table A.9, is reported in the Supplementary Appendix (SA.A.3).

The robust finding in Table A.9 lends support to the existence of frictions impeding the separation of
invention and production. Results from the first three columns are visualized in Figure 4 of the text.

Fact 3. The third fact concerns the headquarter effects on affiliate invention and sales. The specifica-
tion is the following:

y f oh,t = FE +−→γ dist ·
−→
distoh + ϵoh f ,t,

in which the outcome variable y f oh,t is measures of invention or sales in host h of firm f from country

o in period t.
−→
distoh, the distance measures between headquarters o and host h, is the focus of this

specification. I exclude headquarters from the sample, so the comparison is among affiliates of the same
firm in different countries.

Columns 1 and 3 of Table A.10 report the results of a linear probability model in which the outcome
variable is an indicator for having an R&D center or affiliate sales in h. They show that geographic
frictions play important but heterogeneous roles. Sharing a language is important for both invention
and production, whereas distance and colonial ties matter more for production. These estimates are
economically sizable compared to the mean value of the dependent variables (0.018 and 0.027, respec-
tively). Columns 2 and 4 estimate the intensive margin effect of distance to the headquarters on affiliate
activities. Sharing a common language is more important for invention, but other types of geographic
frictions are in general more important for sales. Columns 5 and 6 the proximity to the headquarters
matter for affiliate sales, along both extensive and intensive margins, even after the co-location indicator
is controlled for.

These results indicate another possible role of geography: by affecting knowhow transfer, it can
limit the reach of the activities by multinational firms. Figure 4 of the main text visualize variants of
Columns 2 and 4 that do not control for common language, contiguity, and colonial tie indicators.

Table A.10: The Headquarter Effect on Invention and Sales

(1) (2) (3) (4) (5) (6)
Affiliate Invention Affiliate Sales

Dependent var. indicator ln(patent) indicator ln (sales) indicator ln (sales)

ln(distance)oh -0.002∗∗ -0.129∗∗∗ -0.005∗∗∗ -0.282∗∗∗ -0.005∗∗∗ -0.253∗∗∗

(0.001) (0.034) (0.002) (0.028) (0.001) (0.027)
common languageoh 0.020∗∗∗ 0.258∗∗∗ 0.022∗∗∗ 0.162∗∗ 0.015∗∗ 0.094

(0.004) (0.072) (0.009) (0.064) (0.007) (0.061)
contiguityoh 0.002 0.106 0.004 0.185∗∗∗ 0.003 0.174∗∗∗

(0.002) (0.072) (0.004) (0.061) (0.004) (0.058)
colonial tieoh 0.002 0.029 0.024∗∗∗ 0.153∗∗ 0.023∗∗∗ 0.129∗

(0.004) (0.067) (0.008) (0.075) (0.007) (0.068)
R&D indicator f h,t 0.375∗∗∗ 1.198∗∗∗

(0.019) (0.031)
Observations 7295102 45364 7295102 103131 7295102 103131
R2 0.124 0.336 0.302 0.420 0.339 0.446
Within R2 0.004 0.012 0.006 0.012 0.058 0.056
Firm-period FE Y Y Y Y Y Y
Host-industry FE Y Y Y Y Y Y
Host-period FE Y Y Y Y Y Y

Note: Columns 1 and 2 estimate the relationship between affiliate invention and the proximity of the host to the headquarters. Columns 3 to
6 estimate the relationship between the proximity to the headquarters and affiliate production, among which Columns 5 and 6 also include
the R&D center indicator. Headquarters are excluded from all regressions. Standard errors (in parenthesis) are clustered by country pair. ∗

p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
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B Theory

B.1 An Isomorphic Model with Vertical R&D at Affiliates

The model presented in the text assumes that varieties developed by the same R&D center are differen-
tiated from each other, which can be a strong assumption. In this subsection, I show that the model can
be alternatively micro-founded using vertical quality improvement at affiliate R&D centers.

Suppose by paying the fixed cost for a laboratory (lab), a firm obtains only one new differentiated
variety. Firm can improve the quality of the product (or the efficiency with which the product can be
manufactured) by hiring researchers to work in the lab. Assume product quality q is given by firms’
knowhow and R&D investment as follows:

q = z̃P · z̃R︸ ︷︷ ︸
knowhow

· hγ̃︸︷︷︸
R&D input

⇐⇒ log(q) = log
(

z̃P · z̃R
)
+ γ̃ · log(h). (B.1)

Slightly abusing notation, I use tilde to denote the parameters in this isomorphic model. Here γ̃ deter-
mines how much R&D improves product quality.

Firms can produce this variety in any country, but offshore production is costly. Let the effective
quality if the product is to be manufactured in m is given by ϕP

oim · ηm, in which ηm is an idiosyncratic
efficiency draw from the following distribution:

H(xxx|q) ≡ Prob(η1 ≤ x1, ..., ηN ≤ xN) =

1 − (
N

∑
m=1

(q)θ̃/Nx−θ̃
m ), ∀m ∈ {1, ...N}, xm ≥ q

0, ∃m ∈ {1, ..., N}, xm < q

Compared to the benchmark model, the difference is that exogenous manufacturing efficiency zP is now
replaced with endogenous product quality q.

Assume all the remaining aspects of the setup (e.g., CES final demand, iceberg trade cost) are the
same as in the benchmark model, the expected total production of the firm in country m is simply the
sum of its production for varieties developed in different affiliates:

rom(z̃̃z̃zR, z̃̃z̃zP) ∝
1
N

·
[
(

Tm

W l
m
)θ
]
×

[
∑
d

X
θ

σ−1
d Pθ

d (W
h
d f M

d )
θ+1−σ

1−σ

(τmd)θ

]
×

[
∑
i∈RRR

[z̃P
i · z̃R

i · hoi(z̃R
i , z̃P

i )
γ̃]θ̃(ϕP

oim)
θ̃
]
. (B.2)

Setting θ̃ = θ, γ̃ = γ
θ , z̃R

i = (zR
i )

1
θ , z̃P

i = zP
i , then equation (B.2) is isomorphic to equation (8) in the text,

and they imply the same first-order condition for the intensive margin R&D decisions.17

The above discussion takes the extensive margin offshore R&D decision as given. Because each lab
invents one differentiated variety and make vertical improvement only on that variety, adding R&D
centers affects production in any host country m additively. Therefore, in the absence of fixed cost for
production, this alternative setup also implies that a firm’s decision to establish offshore R&D centers in
different countries are independent—exactly as in the benchmark model.

This analysis shows that the benchmark model can be interpreted alternatively as follows: the fixed
cost for a lab represents the cost of developing a new variety and the intensive margin R&D expenditures
represent vertical improvements for that variety. This alternative micro-foundation clarifies that it is not
essential to assume that varieties within an R&D center are substitutable—tractability of the model stems
from the assumption that varieties from different R&D centers are substitutable.

17Different from the benchmark model, in which each lab develops a continuum of varieties, here, each lab develops only
one variety. As a result, the law of large numbers does not apply, and equation (B.2) corresponds to the expected revenue of
a firm. However, as firms are risk-neutral, their extensive and intensive margin R&D decisions will be based on the expected
revenue and expected profit, which coincide with those in the benchmark model.

17



B.2 Aggregation

This subsection derives a few results under Assumption 1 for aggregation. For convenience I first intro-
duce the following lemma, which has been proved in Arkolakis et al. (2018) and is only included for this
appendix to be self-contained. Proofs are provided in the Supplementary Appendix.

Lemma B.1. Suppose ηηη = (η)N
h=1 is a random variable with the following CDF:

H(xxx|z) ≡ Prob(η1 ≤ x1, ..., ηN ≤ xN |z) =

1 − (
N

∑
m=1

zθ

N
x−θ

m ), ∀m ∈ {1, ...N}, xm ≥ z

0, ∃m ∈ {1, ..., N}, xm < z

Define ζ ≡ maxm Amηm, where Am, m = 1, ..., N are positive constants. Then the following holds:

1. The CDF for ζ is

Prob(ζ ≤ x|z) =
{

1 − Ãθx−θ , if x ≥ Ā
0, if x < Ā.

(B.3)

where Ã = z ·
(

1
N ∑m Aθ

m

) 1
θ

and Ā = z · maxm Am

2. The conditional expectation of ζ above x is:

E[ζ|ζ ≥ x] =
θ

θ − 1
x, ∀x ≥ Ā.

3. The conditional probability of the maximum value of ∑m′ Am′ηm′ realizing at m is

Prob(m = arg max
m′

Am′ηm′

∣∣∣ζ ≥ x) =
Aθ

m

∑m Aθ
m

, ∀x > Ā, ∀m = 1, 2, ..., N. (B.4)

Moreover, the distribution of ζ conditional on the maximum value realizing at m is:

Prob(ζ ≥ x′|m = arg max
m′

Am′ηm′ ∧ ζ ≥ x
)
= (

x′

x
)−θ , ∀x′ ≥ x > Ā, (B.5)

which is independent of m.

Deriving equations (5), (6), (11) and (12). With Lemma B.3, I derive expressions for a few aggregate

objects. For convenience, define a new random variable ζoid ≡ maxm
TmϕP

oim
Wm

m τmd
· ηm, then from the first part

of the Lemma, the distribution of ζoid is given by:

Hoid(x|zP) ≡ Prob(ζoid ≤ x|zP) =

1 − (
ζ̃oid

x
· zP)θ , x ≥ ζoid · zP

0, x < ζoid · zP

where ζ̃oid ≡
(

∑m
1
N (

TmϕP
oim

W l
mτmd

)θ
) 1

θ
and ζoid ≡ maxm

TmϕP
oim

W l
mτmd

. Here ζ̃oid · zP and ζoid · zP correspond to Ã and

A defined in equation (B.3), respectively.
Cast poid(ω) in the space of ζoid, then the price for a particular realization can be written as poid(ζ) =

σ
σ−1 · 1

ζoid
. The probability that the product is manufactured in m is simply the probability that the best

realization of ζoid realizes in m. From the third part of the lemma, this probability is independent of zP,
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and given by

ψoimd ≡ Prob(m = max
m

TmϕP
oim

W l
mτmd

· ηm|ζoid > x, zP) =

1
N (

TmϕP
oim

W l
mτmd

)θ

1
N ∑m′(

TmϕP
oim′

W l
m′τm′d

)θ
, ∀x ≥ ζ̄oid · zP (B.6)

Because the conditional distribution of ζoid is the same regardless of which country ends up with the

maximum value for TmϕP
oim

W l
mτmd

· ηm (equation (B.5)), the above choice probability is also equal to the share of
sales produced in m.

For later use, I calculate the following:

∫ ∞

0
1(poid(ζ) < p̂d) · poid(ζ)

1−σdHoid(ζ|zP) =
θ

θ − (σ − 1)
(

σ − 1
σ

)θ Pθ+1−σ
d (

σWh
d f M

d
Xd

)
θ+1−σ

1−σ (ζ̃oidzP)θ (B.7)

I define roid(zP) to be the expected revenue. Combine equation (B.7) with the definition of roid(zP) to
obtain:

roid(zP) =
Xd

P1−σ
d

∫ ∞

0
1(poid(ζ) < p̂d) · poid(ζ)

1−σdHoid(ζ|zP) (B.8)

=
θ

θ − (σ − 1)
(σ − 1)θσ1− θσ

σ−1 X
θ

σ−1
d Pθ

d (W
h
d f M

d )
θ+1−σ

1−σ (ζ̃oidzP)θ

Define the expected marketing cost incurred for a variety as f
M
oid(z

P), then similar steps give:

f
M
oid(z

P) = f M
d Wh

d

∫ ∞

0
1(poid(ζ) < p̂d)dHoid(ζ|zP) = (

σ − 1
σ

)θσ
θ

1−σ ( f M
d Wh

d )
σ−1−θ

σ−1 X
θ

σ−1
d Pθ

d (ζ̃oidzP)θ . (B.9)

The operational profit is simply the difference between markup and marketing cost, given by:

πoid(zP) =
1
σ

Xd

P1−σ
d

∫ ∞

0
1(poid(ζ) < p̂d) · poid(ζ)

1−σdHoid(ζ|zP)− f M
d Wh

d

∫ ∞

0
1(poid(ζ) < p̂d)dHoid(ζ|zP)

(B.10)

=
(σ − 1)1+θ

θ − (σ − 1)
σ

σθ
1−σ ( f M

d Wh
d )

σ−1−θ
σ−1 X

θ
σ−1
d Pθ

d (ζ̃oidzP)θ .

Equations (B.8), (B.9), (B.10) immediately imply:

f
M
oid(z

P)

roid(zP)
=

θ − (σ − 1)
θσ

,
πoid(zP)

roid(zP)
=

σ − 1
θσ

.

I now derive the aggregate price index Pd and trade flows Xoid

P1−σ
d = ∑

o
∑

i
Roi

∫ ∞

0

∫ ∞

0
voi(zP, zR)[

∫ ∞

0
1(poid(ζ) < p̂d) · poid(ζ)

1−σdHoid(ζ|zP)] · goi(zP, zR)dzPdzR

=
θ

θ − (σ − 1)
(

σ − 1
σ

)θ Pθ+1−σ
d (

σWh
d f M

d
Xd

)
θ+1−σ

1−σ ∑
o

∑
i

ζ̃θ
oid

∫ ∞

0
(zP)θVoi(zP)dzP.
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Xoid = Pσ−1
d Xd · Roi

∫ ∞

0

∫ ∞

0
voi(zP, zR)[

∫ ∞

0
1(poid(ζ) < p̂d) · poid(ζ)

1−σdHoid(ζ|zP)] · goi(zP, zR)dzPdzR

=
θ

θ − (σ − 1)
(

σ − 1
σ

)θ(
Xd

P1−σ
d

)
θ

σ−1 (σWh
d f M

d )
θ+1−σ

1−σ ζ̃θ
oid

∫ ∞

0
(zP)θVoi(zP)dzP.

B.3 Definition of Equilibrium

Definition 1. Given the fundamentals, a competitive equilibrium of the model is characterized by a set of decision
rules, prices, and allocations, such that ∀o, i, d = 1, .., N the following holds:

1. Firms’ production, market entry, and pricing decisions for each individual variety are optimal, which implies
that the following holds ∀zP ∈ ZP:

roid(zP) =
θ(σ − 1)θσ1− θσ

σ−1

θ − (σ − 1)
X

θ
σ−1
d Pθ

d (W
h
d f M

d )
θ+1−σ

1−σ (ζ̃oidzP)θ , f
M
oid(z

P) =
θ − (σ − 1)

θσ
roid(zP) (B.11)

πoid(zP) =
1
σ

roid(zP)− f
M
oid(z

P) =
σ − 1

θσ
roid(zP), πoi(zP) = ∑

d
πoid(zP),

where ζ̃oid ≡ [∑
m

1
N
(

Tmϕ
p
oim

W l
mτmd

)θ ]
1
θ .

2. Firms’ R&D and offshore R&D decisions satisfy the following:

voi(zP, zR) = zR
1

1−γ

(γπoi(zP)

Wh
i

) γ
1−γ

, πR
oi(z

P, zR) = (γ
γ

1−γ − γ
1

1−γ )
( 1

Wh
i

) γ
1−γ (

πoi(zP)zR) 1
1−γ

(B.12)

πR
oi(z

R) =
∫ ∞

0
πR

oi(z
P, zR)gP(zP|zR)dzP, πR

oi(ẑ
R
oiϕ

R
oi) = f R

oi W
h
i

3. The distribution of R&D center innovation efficiency in each host is consistent with firms’ offshore R&D
decisions and the endowment distribution of the origin countries:

Roi = Eo ·
(

1 − GE
o (ẑ

R
oi)

)
(B.13)

gR
oi(z

R) =
1

Roi
1(zR > ẑR

oiϕ
R
oi) · Eo · gE

o (
zR

ϕR
oi
) · 1

ϕR
oi

goi(zP, zR) = gP(zP|zR)gR
oi(z

R).
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4. Firm decisions are consistent with aggregate trade flows

Voi(zP) = Roi

∫ ∞

0
voi(zP, zR) · goi(zP, zR)dzR (B.14)

Xoid = θ(
σ

σ − 1
)−θ 1

θ − (σ − 1)
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oid

∫ ∞

0
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Xoimd = ψoimdXoid
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h
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and the aggregate price indices

P1−σ
d = θ(

σ

σ − 1
)−θ 1

θ − (σ − 1)

(σWh
d f M

d
Xd

) θ−(σ−1)
1−σ

Pd
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o
∑
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ζ̃θ

oid

∫ ∞

0
(zP)θVoi(zP)dzP (B.15)

5. Workers’ occupation choices are optimal:

Wh
d α̂d = W l

d (B.16)

Lh
d = Ld ·

∫
α>α̂d

α dAd(α)

Ll
d = Ld · Ad(α̂d).

6. Labor markets clear

Wh
d Lh

d = ∑
o

Iod + ∑
o

FM
od + ∑

o
FR

od (B.17)

W l
dLl

d = ∑
o

Yod

7. Total income equals total expenditures

Xd = Wh
d Lh

d + W l
dLl

d + ∑
i
(Πdi − FR

di) (B.18)

Note that once {α̂d, W l
d, Wh

d : d ∈ 1, ..., N}, {Xd : d ∈ 1, ..., N}, and {Pd : d ∈ 1, ..., N} are known,
all other endogenous variables appearing in the above definition can be calculated sequentially with
equations (B.11), (B.12), (B.13), and (B.14). The competitive equilibrium can therefore be viewed as a
fixed point in {α̂d, W l

d, Wh
d : d ∈ 1, ..., N}, {Xd : d ∈ 1, ..., N}, and {Pd : d ∈ 1, ..., N}, so that equations

(B.15), (B.16) , (B.17), and (B.18) hold, with endogenous objects in these four set of equations defined
implicitly as functions of wages, prices and expenditures by equations (B.11), (B.12), (B.13), and (B.14).
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C Quantification

This section provides additional details on the quantification procedure and counterfactual results.

C.1 Additional Data for Quantification

Sample countries. The model economy consists of the same 37 countries as in the empirical section. See
Section A.3 of this appendix for a discussion on the sample selection. Among these countries, Ireland is
frequently dubbed as a ‘tax-haven’ country, in which reported financial statistics might be unreliable. I
include Ireland in the sample because this allows me to not take a stand on how to redirect the foreign
linkages that run through it. That said, if these links are simply assumed to be non-existence, measured
openness for other countries will be similar.

Country-specific openness measures. In disciplining host specific barriers to inward MNC activi-
ties, I use three targets: the share of production by foreign firms, the share of innovation by foreign R&D
centers, and the share of foreign R&D centers in total R&D center counts. These targets are calculated
from the firm-level data described in Section A.3, with the following modifications. First, given my in-
terpretation of the model as for manufacturing, I focus only on manufacturing firms in calculating these
ratios. Second, all firms in the model carry out some R&D, but not all firms in the data are granted
patents. Instead of using the joint sample to construct the ratios, I use the full financial sample to calcu-
late inward offshore production measure, and the full R&D sample to calculate the two (extensive and
intensive margins) inward offshore R&D measures. Third, for the three countries for which the financial
data have relatively low coverage (Mexico, Turkey, U.S.), instead of aggregating the firm-level data, I
use the aggregate shares in Ramondo et al. (2019), described by Ramondo et al. (2015). Finally, recent
research has found that patents granted by the Chinese patent office to local firms are systematically less
likely to be global patents than the patents they grant to foreign firms, suggesting differential treatments
based on where firms are from (Holmes et al., 2015). To avoid biases arising from potential discrimina-
tory treatments, I exclude all patents issued by the Chinese patent authority when calculating the inward
offshore R&D ratio for China. Table C.1 reports the three openness measures.

Endowment distributions. The calibration uses the World Management Survey (Bloom et al., 2012a)
and an internationally comparable cognitive ability score database (Hanushek and Woessmann, 2012a). I
take the exponent of the innovation management score so that its distribution has a right tail that resem-
bles the firm size distribution. I compute the mean, standard deviation, and skewness of the exponent
of scores in each country, which then serve as an input to the calibration. The distribution statistics for
cognitive test scores are from Hanushek and Woessmann (2012b). These statistics include the average
cognitive score for high school students in a country, the share of students achieving ‘top’ performance,
and the share of student achieving ‘basic’ performance. Thresholds for ‘top’ and ‘basic’ performance are
defined based on a common set of standards so these shares are comparable internationally.

A few countries in the sample are not included in the World Management Survey. I impute their
management distribution statistics by regressing each statistics on income, R&D share, and geographic-
region fixed effects, where geographic regions are at sub-continent level. The inclusion of income is
motivated by the finding in Bloom et al. (2012b) that management knowhow explains a substantial share
of cross-country income differences; the inclusion of geographic-region fixed effects is meant to capture
management practice differences driven by culture. The R2 of these regressions are all above 0.85.

Table C.1 reports these statistics for all countries.

C.2 Parameterization

Bilateral trade costs. I assume that the iceberg trade costs are symmetric and that trade cost with own
country is 1, i.e., τmm = 1, ∀m and τmd = τdm, ∀m ̸= d. Under these assumptions, the approach in Head
and Ries (2001) generalizes to my setting.
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Table C.1: Calibration Targets: Country Characteristics

Income and Openness Innovation Mgt. Dist. Talent Dist.

ISO Xm
Pm

∑i Voi
∑o,i Voi

∑o ̸=m Yom

∑o Yom

∑o ̸=i Voi

∑o Voi

∑o ̸=i Roi

∑o Roi
mean std skew. mean % basic % top

AUS 0.81 1.03 60.87 39.78 33.38 6.43 3.64 1.88 5.09 93.84 11.24
AUT 0.76 0.59 63.09 45.49 41.70 6.91 4.14 2.15 5.09 93.11 9.74
BEL 0.81 0.45 82.31 58.85 54.32 7.14 4.48 2.27 5.04 93.13 9.38
BGR 0.29 0.05 32.02 19.02 17.04 6.80 3.93 1.50 4.79 76.53 8.30
BRA 0.26 1.10 19.17 57.58 46.73 5.26 3.33 2.34 3.64 33.85 1.09
CAN 0.73 1.20 35.35 52.21 47.55 8.40 6.09 2.01 5.04 94.84 8.33
CHE 0.90 1.51 36.21 41.68 44.57 7.40 4.88 2.41 5.14 91.85 13.36
CHN 0.17 19.84 23.93 41.52 21.93 5.94 2.74 1.85 4.94 93.48 8.34
CZE 0.52 0.28 62.14 26.59 22.89 6.47 3.44 1.33 5.11 93.07 12.22
DEU 0.77 6.85 46.54 28.16 29.94 8.21 5.25 2.20 4.96 90.60 10.52
DNK 0.80 0.40 63.62 38.37 38.26 7.28 5.46 2.75 4.96 88.78 8.75
ESP 0.74 1.15 49.89 22.09 16.93 5.29 3.46 2.21 4.83 85.88 7.93
EST 0.46 0.03 53.49 28.48 34.27 6.11 3.71 2.14 5.19 97.32 9.46
FIN 0.73 0.80 28.05 24.86 18.43 6.84 4.79 2.51 5.13 95.78 12.39
FRA 0.82 3.89 42.68 26.58 40.34 6.43 4.25 2.52 5.04 92.62 8.49
GBR 0.70 1.85 87.73 62.95 53.21 7.36 5.04 2.24 4.95 92.88 8.79
GRC 0.59 0.09 24.51 50.08 80.00 5.63 3.70 1.89 4.61 79.77 4.24
HRV 0.51 0.03 28.34 53.37 60.87 5.45 3.21 1.93 4.70 83.35 4.76
HUN 0.48 0.08 47.70 61.09 38.01 6.56 3.57 1.37 5.05 94.11 10.28
IRL 1.13 0.69 77.34 73.67 68.78 7.14 6.73 3.86 4.99 91.37 9.40
ITA 0.79 1.23 33.85 43.84 29.03 6.47 4.15 2.17 4.76 87.54 5.45
JPN 0.63 11.76 6.65 1.99 17.42 7.83 5.57 1.82 5.31 96.67 16.76
KOR 0.60 4.87 9.71 6.72 14.33 7.06 4.42 1.92 5.34 96.16 17.84
LTU 0.55 0.04 46.93 20.30 16.76 6.70 4.59 2.44 4.78 89.07 2.97
LVA 0.45 0.02 38.21 6.07 31.25 5.94 3.45 2.05 4.80 86.95 4.99
MEX 0.34 0.33 17.80 55.01 64.30 6.90 4.43 1.66 4.00 48.93 0.88
NLD 0.80 2.01 93.21 30.27 29.58 7.34 4.79 2.37 5.11 96.54 9.16
NOR 1.34 0.39 46.67 32.27 22.60 8.81 7.72 3.54 4.83 89.44 5.61
POL 0.51 0.47 49.96 14.61 24.63 7.25 4.60 1.73 4.85 83.76 9.86
PRT 0.55 0.21 46.40 26.20 40.78 5.38 2.99 1.94 4.56 80.27 3.16
ROU 0.41 0.06 64.47 52.75 47.65 6.63 3.68 1.41 4.56 78.05 4.56
RUS 0.42 2.32 35.17 11.63 13.63 6.82 3.96 1.51 4.92 88.35 8.05
SVK 0.53 0.06 67.86 27.71 44.79 6.89 4.06 1.54 5.05 90.55 11.16
SVN 0.51 0.08 36.61 17.17 19.96 5.40 3.14 1.90 4.99 93.89 6.12
SWE 0.79 1.13 48.39 43.20 34.43 7.06 4.17 1.99 5.01 93.94 8.76
TUR 0.54 0.73 6.34 20.12 23.86 5.86 2.58 2.09 4.13 58.23 3.92
USA 1.00 32.38 15.29 15.77 13.62 10.94 8.15 2.15 4.90 91.82 7.33

Note: This table reports the country-level statistics used as targets in parameterization. The first set of targets are on the income and openness
of countries, corresponding to Panel B of Table 5. These columns are: real income (U.S. normalized to 1), the contribution (%) of a country to
the world world R&D (based on the origin of firms), the share (%) of domestic production by foreign firms, the share (%) of domestic R&D
by foreign R&D centers, and the share (%) of foreign R&D centers among all active R&D centers in a host. ‘Innovation Mgt. Dist.’ refers to
the sample distribution statistics constructed from the World Management Survey as described in Section C.1. ‘Talent Dist.’ refers to the talent
distribution statistics from Hanushek and Woessmann (2012b), in which ‘Mean’ is the mean score for a country, and ‘% basic’ and ‘% topc’ are
shares of students achieving ‘basic’ and ‘top’ performance, respectively. The performance standards are common across countries.

To this end, using equation (B.14):

Xoimd = Xoidψoimd ≡ Bd
1
N
(

TmϕP
oim

W l
mτmd

)θ · Bo,i,

where Bd and Bo,i are functions of the equilibrium objects in d and in (o, i) introduced to shorten nota-
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tions. Using this expression, we have:

∑o,i Xoimd

∑o,i Xoimm
· ∑o,i Xoidm

∑o,i Xoidd
=

Bd(
1

W l
mτmd

)θ ∑o,i ϕP
oimBo,i

Bm(
1

W l
mτmm

)θ ∑o,i ϕP
oimBo,i

×
Bm(

1
W l

dτdm
)θ ∑o,i ϕP

oidBo,i

Bd(
1

W l
dτdd

)θ ∑o,i ϕP
oidBo,i

= (τmd)
−2θ .

Notice that although the flow items such as Xoimd are not observable, ∑o,i Xoidm is simply the total sales
from d to m, which is observable.

Slightly abusing notations, I write τmd = ( ∑o,i Xoimd
∑o,i Xoimm

· ∑o,i Xoidm
∑o,i Xoidd

)−
1
2θ = ( Xmd

Xmm
× Xdm

Xdd
)−

1
2θ , where Xmd de-

notes the sales from m to d as in the gravity literature. I obtain these sales for the aggregated manufac-
turing sector from the World Input Output Database.

Relating production efficiency to innovation efficiency. To discipline the relationship between
firms’ innovation and production management efficiency, I use micro data from the World Management
Survey to estimate the following equation:

Prob(zP ∈ H|zR) =
exp(δ0 + δ1 × zR)

1 + exp(δ0 + δ1 × zR)
. (C.1)

This dataset covers around 11338 firms from 34 countries. I classify a firm as being a H type, if its produc-
tion management scores falls in the top 5% in the sample. Table C.2 presents summary statistics on this
score and the indicator for H type. Table C.3 presents results from a logit regression of equation (C.1).
Column 1 uses no fixed effects whereas Column 2 includes country fixed effects. Both specifications find
positive and statistically significant coefficient, consistent with strong correlation between innovation
efficiency and production efficiency. Based on the estimates, I set δ1 = 0.21 and δ0 = −5.

For illustration, Figure C.1 plots the parameterized distribution for the U.S. About 12% of the Amer-
ican firms end up being a H type.

Table C.2: Firm Management Score Summary Statistics

Variable Obs Mean Std. Dev. Min Max

zR 11338 6.68 4.92 1 54.6
1(zP ∈ GP

H) 11340 .051 0.22 0 1
Notes: This table presents summary statistics for firm-level innovation management scores and the indicator for whether a firm is in the top
5% production efficiency.

Table C.3: Estimates for δ0 and δ1

(1) (2)
1(zP ∈ GP

H)

zR 0.213*** 0.210***
(0.00719) (0.00797)

cons -4.921*** -
(0.0950) -

N 11338 10637
pseudo R2 0.251 0.281
country FE yes

Notes: This table presents results from a Logit regression of the high production efficiency indicator 1(zP ∈ GP
H), on firms’ innovation efficiency,

zR. The high production efficiency indicator takes a value of 1 if the production management score of a firm is in the top 5% in the world. The
second column controls for country fixed effects. Standard errors are in parentheses. * p < 0.10, ** p < 0.05, *** p < 0.01
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Figure C.1: The U.S. Firm Knowhow Distribution

Notes: The horizontal axis is the support of the innovation efficiency for firms from the U.S. The dashed line (left axis) is the probability density
function of the innovation efficiency. The solid line (right axis) is the probability that a firm with a given zR obtains a draw from GP

H(z
P), i.e.,

the value of equation (C.1).

Geographic friction parameters. Table C.4 reports the 22 targets used to pin down 17 geographic pa-
rameters. The left panel is the data, corresponding to regressions discussed in Section 4.3 of the text. The
brackets are the 95% confidence intervals of these coefficients. The right panel reports the corresponding
regression coefficients estimated with the exact same specifications using model-simulated data. The
coefficients in general match the data counterparts closely. I highlight using underline the coefficient
that is outside the 95% confidence interval of the original coefficient. Even this coefficient is not far off
the target.

Table C.4: Calibration Targets: Geographic Friction Parameters

A. Data (Table 4 of the text) B. Model

Headquarter Effect Colocation Headquarter Effect Colocation

Dependent var. R&D indicator log (R&D) log(sales) log(sales) log(sales) R&D indicator log (patents) log(sales) log(sales) log(sales)

log(dist)oh -0.002 -0.129 -0.282 -0.253 -0.0003 -0.124 -0.274 -0.273
[-0.003,-0.000] [-0.197,-0.062] [-0.337,-0.227] [-0.291,-0.214]

Common languageoh 0.020 0.258 0.162 0.094 0.0185 0.238 0.133 0.113
[0.011,0.029] [0.117,0.399] [0.030,0.294] [0.021,0.168]

Contiguityoh 0.002 0.106 0.185 0.174 0.0028 0.078 0.182 0.179
[-0.001,0.006] [-0.036,0.248] [0.059,0.311] [0.103,0.245]

Colonial tieoh 0.002 0.029 0.153 0.129 0.0089 0.026 0.109 0.100
[-0.006,0.009] [-0.102,0.160] [-0.002,0.308] [0.057,0.201]

R&D center indicator 1.198 1.042 1.069 1.086
[1.147,1.259] [0.991,1.092]

log(dist f h,t) -0.0235 -0.014
[-0.073,0.025]

Common language f h,t 0.220 0.212
[0.120,0.319]

Contiguity f h,t 0.143 0.140
[0.046,0.239]

Colonial tie f h,t 0.090 0.176
[0.001,0.179]

Firm FE Y Y Y Y Y Y Y Y Y Y
Host FE Y Y Y Y Y Y Y Y Y Y
Home-host FE N N N N Y N N N N Y

Notes: This table reports moments that pin down geographic parameters. Panel A is a collection of reduced-form regressions, reported in
Section 4.3 of the text. The bracket under each coefficient is its 95% confidence interval. The right panel reports results from regressions using
model-simulated data. Coefficients highlighted by the underline are outside the 95% confidence interval.
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C.3 The Connection with Bilir and Morales (2020) and a Case without ‘Bridge’ R&D

Empirical patterns. Figure 1c in Section 2.2 of the text shows that affiliate sales per invention is posi-
tively correlated with the firm’s invention at the headquarters. I interpret the latter as a proxy for firms’
innovation knowhow and use the above correlation to motivate the assumption that firms can transfer
innovation knowhow—which is correlated with production knowhow—to affiliates.

Besides knowhow transfer, the correlation between affiliate sales and headquarters invention (and
the correlation between headquarters sales and affiliate invention) can also reflect how R&D in one
location benefits production in other locations, which connects with the findings of Bilir and Morales
(2020). To zoom into this connection, Table C.5 below produces the correlation between sales and R&D
in different locations.

Table C.5: Correlation between Sales and R&D at Headquarters and Affiliates

(1) (2) (3) (4) (5)
Outcome var. log parent sales log affiliate sales

average aff. R&D 0.218∗∗∗ 0.115∗∗∗ 0.015
(0.047) (0.034) (0.034)

parent R&D 0.687∗∗∗ 0.558∗∗∗ 0.353∗∗∗ 0.243∗∗∗

(0.024) (0.029) (0.014) (0.019)
# of R&D aff. 0.152∗∗∗

(0.016)
aff. R&D 0.382∗∗∗

(0.017)
Observations 3364 2330 2330 34881 6827
R2 0.363 0.524 0.540 0.213 0.317
Within R2 0.009 0.301 0.325 0.079 0.167

Note: Columns 1 to 3 are at the firm level and control for home country and industry fixed effects; Columns 4 and 5 are at
affiliate level and control for home country, host country, and industry fixed effects. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.

The first three columns focus on the correlation between affiliate R&D and parent sales. The regres-
sions are at the firm level and control for home country and industry fixed effects. The outcome variable
is the logarithm of parent sales. The main explanatory variable is the average log affiliate patents. Col-
umn 1 shows a statistically significant coefficient for this variable. This alone, however, does not mean
parent’s sales benefit significantly from affiliate R&D. Indeed, the coefficient can also be driven by the
transfer of firm knowhow. The second column controls for the logarithm of patents at the HQ. This con-
trol serves two purposes. First, it captures the direct effect of parent R&D on parent sales. Second, it is
a proxy for innovation knowhow. Not surprisingly, the coefficient for parent R&D is sizable and signifi-
cant, and the within R2 more than triples with this control. On the other hand, the coefficient of average
affiliate R&D decrease by half. The third column controls for the number of R&D affiliates, which can
be positively correlated with parent sales for two reasons. First, to the extent that parent R&D is only a
noisy proxy for firm knowhow, the number of R&D affiliates can absorb the remaining knowhow vari-
ation unexplained by parent R&D. Second, conditional on the average affiliate R&D, the total spillovers
from affiliate R&D to parent sales should increase in the number of affiliates. The regression suggests
that having one more R&D affiliate is correlated with a 15% increase in parent sales. Importantly, the
average affiliate R&D becomes statistically insignificant—once the proxies for correlation via knowhow
is controlled for, affiliate R&D does not increase parent sales.

I contrast these findings with results on the relationship between affiliate sales and parent R&D, re-
ported in Columns 4 and 5. The regression are at the affiliate level and control for home country, host
country, and industry fixed effects. Column 4 shows that parent R&D is strongly correlated with affiliate
sales; Column 5 shows that after controlling for the R&D at the same affiliate, which both has a direct
effect on sales and serves as a proxy for the knowhow from the parent, the coefficient of parent R&D
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Table C.6: Gains from Bridge R&D and the Role of Bridge R&D for the Gains from Openness

The Gains from Bridge R&D Gains from Openness in Re-Calibrated Model w/o Bridge R&D
(1) (2)

BRA 0.18 2.28
CHN 0.14 2.80
POL 1.33 9.83
RUS 0.71 6.02

BEL 4.67 34.77
FRA 1.58 15.75
JPN 0.90 7.62
USA 2.90 22.03

Mean (all) 1.96 15.86
Std (all) 1.89 16.55

Notes: All numbers are in percent. The first column reports the gains from bridge offshore R&D, defined as the percentage decrease in real
income as bridge offshore R&D is shut down from the baseline equilibrium; the second column reports the gains from openness in a re-
calibrated model without bridge offshore R&D. See text in Appendix C.3 for detailed descriptions.

diminishes but remains sizable.
If we interpret the residual correlation between affiliate R&D and parent sales (in Columns 2 and 3);

and between affiliate sales and parent R&D (in Column 5), as evidence for R&D spillovers, these results
suggest that parent R&D has a larger impact on affiliate sales than affiliate R&D on parent sales. This is
broadly consistent with Bilir and Morales (2020) and my model. See Section 3.3 for a discussion.

Quantitative exploration of a case without ‘Bridge’ offshore R&D. As previewed in footnote 18,
in the baseline calibration, only 15% of all affiliate production is devoted to varieties invented by the
sibling R&D centers of the affiliate. This implies a positive, although quantitatively small role for ‘bridge’
offshore R&D—R&D at one affiliate influencing production at the firm’s other affiliates. In this appendix,
I explore the role of bridge offshore R&D through two exercises.

In the first exercise, I shut down bridge offshore R&D from the baseline equilibrium by setting ϕP
oim →

0, ∀o, m, i, that satisfy I(o ̸= i)I(o ̸= m)I(i ̸= m) = 1 and solving for the counterfactual equilibrium.
This change implies that the varieties developed in one affiliate cannot be produced at other affiliates. I
then calculate the gains from bridge offshore R&D by comparing the real income between the baseline
equilibrium and this counterfactual equilibrium. Table C.6 Column 1 reports the results. On average,
countries gain 1.96% from bridge offshore R&D. As a special form of offshore R&D, it accounts for
slightly more than half of the overall gains from offshore R&D that is reported in Column 1 of Table
8. This result might appear surprising, given that bridge R&D account for only 15% of affiliate sales.
Note, however, that affiliate R&D requires fixed cost investment, so without the profit from bridge R&D,
firms might not recoup the fixed R&D cost.

In the second exercise I re-calibrate a model imposing ϕP
oim → 0, ∀o, m, i, that satisfy I(o ̸= i)I(o ̸=

m)I(i ̸= m) = 1.18 I then calculate the gains from openness in this re-calibrated model. Table C.6
Column 2 reports the results. The average gains from openness are around 15.86, similar to the gains
from openness in the baseline model that is reported in Column 4 of Table 8.

To see how incorporating offshore R&D this way—i.e., without allowing for bridge offshore R&D—
affects the inferred gains from openness, we can compare Column 2 of Table C.6 to Column 5 of Table 8.19

This comparison shows that, on average, incorporating offshore R&D increases the gains from openness

18I keep other components of geographic parameters as in the baseline model and re-calibrate parameters in Panel B of Table
5 to match the corresponding targets.

19Column 5 of Table 8 remains a relevant benchmark—if we shut down all offshore R&D in this alternative model and then
re-calibrate it to calculate the gains from openness, we would arrive exactly at the numbers in Column 5 of Table 8.
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by a factor of 1.3 (15.86/12.15), same as in the case of the baseline model.
Therefore, if we have imposed that affiliate R&D cannot benefit production at sibling affiliates, we

would have reached a similar conclusion on the impact of incorporating offshore R&D for the inferred
gains from openness.20 This reflects that in the baseline calibration, only a moderate share of offshore
R&D is for production at other offshore locations. It is instructive to compare this case to the re-calibrated
model with s = 0, reported in Column 7 of Table 8. There, we find substantially larger gains from
openness. The reason is that a substantial part of offshore R&D is for local production and by setting
s = 0, we divert most of these to the headquarters. Thus, to match the same inward MP ratios, we need
much more integration among countries (measured using the ratios in Proposition 4) than in the baseline
model, leading to larger gains from openness.
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