Trade and Technology Compatibility in General Equilibrium

Weili Chen (Penn State) Jingting Fan (Penn State) Wenlan Luo (Tsinghua) December 2023 • Intermediate inputs embody the technology choice of the supplier; for an input to function well, its technology need to be 'compatible' with the technology of the user firm

- Intermediate inputs embody the technology choice of the supplier; for an input to function well, its technology need to be 'compatible' with the technology of the user firm
 - think a technology as a way of combining different scientific fields to make a product

- Intermediate inputs embody the technology choice of the supplier; for an input to function well, its technology need to be 'compatible' with the technology of the user firm
 - think a technology as a way of combining different scientific fields to make a product
 - e.g, among the technologies for cars (gas, EV, HEV, PHEV, hydrogen EV):
 gas cars rely more on mechanical eng.; electric cars more on electrical and chemical eng.

- Intermediate inputs embody the technology choice of the supplier; for an input to function well, its technology need to be 'compatible' with the technology of the user firm
 - think a technology as a way of combining different scientific fields to make a product
 - e.g, among the technologies for cars (gas, EV, HEV, PHEV, hydrogen EV):
 gas cars rely more on mechanical eng.; electric cars more on electrical and chemical eng.
 - the ideal supplier is not only efficient but also uses a compatible technology

- Intermediate inputs embody the technology choice of the supplier; for an input to function well, its technology need to be 'compatible' with the technology of the user firm
 - think a technology as a way of combining different scientific fields to make a product
 - e.g, among the technologies for cars (gas, EV, HEV, PHEV, hydrogen EV):
 gas cars rely more on mechanical eng.; electric cars more on electrical and chemical eng.
 - the ideal supplier is not only efficient but also uses a compatible technology
- In choosing their technology, firms consider available suppliers under each choice

- Intermediate inputs embody the technology choice of the supplier; for an input to function well, its technology need to be 'compatible' with the technology of the user firm
 - think a technology as a way of combining different scientific fields to make a product
 - e.g, among the technologies for cars (gas, EV, HEV, PHEV, hydrogen EV): gas cars rely more on mechanical eng.; electric cars more on electrical and chemical eng.
 - the ideal supplier is not only efficient but also uses a compatible technology
- In choosing their technology, firms consider available suppliers under each choice
- In the global economy, trade and technology choice shape each other
 - comparative advantage in the space of technologies determine with what technology goods will be produced
 - stronger trade linkages \Leftrightarrow closer technology choice

- Intermediate inputs embody the technology choice of the supplier; for an input to function well, its technology need to be 'compatible' with the technology of the user firm
 - think a technology as a way of combining different scientific fields to make a product
 - e.g, among the technologies for cars (gas, EV, HEV, PHEV, hydrogen EV):
 gas cars rely more on mechanical eng.; electric cars more on electrical and chemical eng.
 - the ideal supplier is not only efficient but also uses a compatible technology
- In choosing their technology, firms consider available suppliers under each choice
- In the global economy, trade and technology choice shape each other
 - comparative advantage in the space of technologies determine with what technology goods will be produced
 - stronger trade linkages \Leftrightarrow closer technology choice
 - trade policies affect welfare by shaping technology choice

Motivation: Technology Proximity and Trade

(d, i): buying country d and sector i; (o, j): selling country o and sector j M_{do}^{ij} : value of intermediate inputs imported by (d, i) from (o, j) TP_{do}^{ij} : cosine similarity (Jaffe, 1986) between (d, i) and (o, j) in their citation profiles X_{do} : bilateral distance metrics; income gap (||log income difference||) FE: fixed effects

$$\ln M_{do}^{ij} = \beta \times \ln TP_{do}^{ij} + FE_{di} + FE_{oj} + FE_{ij} + X_{do} + \epsilon_{do}^{ij}$$

This Paper

• **Goal**: a tractable GE framework to think about technology compatibility. We answer the following questions:

How does technology choice propagate along the supply chain?

How does trade affect a country's technology?

This Paper

• **Goal**: a tractable GE framework to think about technology compatibility. We answer the following questions:

How does technology choice propagate along the supply chain? How does trade affect a country's technology?

- Model: technology compatibility in a model of endogenous production network
 - efficiency of input sourcing improves with technology proximity to suppliers
 - incentive to be compatible with suppliers \rightarrow choice of technology
 - trade shock \rightarrow change in trading partner \rightarrow change in the choice of technology

• **Goal**: a tractable GE framework to think about technology compatibility. We answer the following questions:

How does technology choice propagate along the supply chain? How does trade affect a country's technology?

- Model: technology compatibility in a model of endogenous production network
 - efficiency of input sourcing improves with technology proximity to suppliers
 - incentive to be compatible with suppliers \rightarrow choice of technology
 - trade shock \rightarrow change in trading partner \rightarrow change in the choice of technology
- Empirics: proximity of technology constructed from patents positively correlated with intensity of trade, validating the model mechanisms
 - use time-variations in MFN tariffs; coefficients identify key structural parameters

• **Goal**: a tractable GE framework to think about technology compatibility. We answer the following questions:

How does technology choice propagate along the supply chain? How does trade affect a country's technology?

- Model: technology compatibility in a model of endogenous production network
 - efficiency of input sourcing improves with technology proximity to suppliers
 - incentive to be compatible with suppliers \rightarrow choice of technology
 - trade shock \rightarrow change in trading partner \rightarrow change in the choice of technology
- Empirics: proximity of technology constructed from patents positively correlated with intensity of trade, validating the model mechanisms
 - use time-variations in MFN tariffs; coefficients identify key structural parameters
- Quantification:
 - accounting for country-pair proximity of technology
 - model explains 69%. Compatibility incentive explains 31%
 - technology decoupling doubles losses of semi-conductor embargo to China

- Organization of production/trade networks: Kortum(97), Jones (11), Chaney (14), Oberfield (18), Boehm and Oberfield (20), Demir, Fieler, Xu and Yang (23) New: Horizontal differentiation
- Technology compatibility (and trade): Carluccio and Fally (13), Costinot (08) New: compatibility among a spectrum of technologies (rather than two technologies differentiated by country); a tractable framework with trade and production networks
- Quantitative trade models: Eaton and Kortum (02), Chaney (08), Caliendo and Parro (14), Lind and Ramondo (23) New: Endogenous trade costs from technology (in)compatibility; existence/uniqueness of the model in which heterogeneous firms interact directly with each other rather than only via prices
- Trade and spillovers: Buera and Oberfield (20); Cai, Li and Santacreu (22); Lind and Ramondo (23); Ayerst et al. (23); Liu and Ma (23); Aghion et al. (21); Keller (review, 21) New: relationship between technology proximity and trade; structural interpretations of cross-country citation patterns

- A model of endogenous production networks with technology compatibility
- Empirics: bilateral relationship between technology proximity and trade intensity
- Quantification
 - Accounting for country-pair proximity of technology
 - The effects of trade shock amplified by technology decoupling

- N regions, denoted (d, o). S sectors (i, j). Mass one firm in each region-sector, each with a differentiated variety
- Firms differ in productivity and technology, $heta \in \mathbb{R}$ (model can accommodate \mathbb{R}^n)
 - firms in region-sector (o, j) draw endowment technology $\overline{\theta}$ from distribution $\overline{\Theta}'_o$
 - firms choose θ ; cost of adaption increases in dist $(\theta, \overline{\theta})$
- Firms choose the suppliers for each input sector
 - sourcing efficiency decays in distance of θ , b/w firm and its supplier
- Production takes place, firms sell to consumers and downstream firms

Distribution of Endowment and Chosen Direction: An Example

- Marginal cost pricing when selling to downstream firms
- Monopolistic competitive markups when selling to consumers, which have preference

$$U_d\equiv\prod_{j=1}^{\mathsf{S}}[U_d^j]^{
ho_d^j}, \quad U_d^j=\Big[\sum_o\int_0^1[q_{do}^j(\omega_o^j)]^{rac{\eta-1}{\eta}}d\omega_o^j\Big]^{rac{\eta}{\eta-1}},\eta>1$$

• Expected profits for firms with technology θ from region-sector (o, j):

$$\mathbb{E}\Pi_o^j(\boldsymbol{c}_o^j(\boldsymbol{\theta})) \propto \mathbb{E}\frac{1}{\eta} \sum_d \rho_d^j I_d \frac{[\boldsymbol{c}_o^j(\boldsymbol{\theta}) \boldsymbol{\tau}_{do}^{Uj}]^{1-\eta}}{[\boldsymbol{P}_d^j]^{1-\eta}},$$

where $c_o^j(\theta)$ is a r.v. that denotes the production cost of a firm with θ in (o, j)

• Adaptation costs $\phi(\bar{\theta}, \theta)$ rises in $|\theta - \bar{\theta}|$. Firms choosing technology solving

$$\max_{\theta} \left[1 - \phi(\bar{\theta}, \theta) \right] \mathbb{E} \Pi_o^j(c_o^j(\theta))$$

• Ex-ante dist. of technology, $\overline{\Theta}^j_o$ + Adaptation \Rightarrow ex-post dist Θ^j_o

- A firm ν from region-sector (d, i) chooses θ(ν) and then draws a random set of production techniques and minimizes its unit production cost
- A technique r is characterized by (1) TFP A(ν, r) and (2) a set of potential suppliers from each country-sector, denoted by Ω^j_o(ν, r)
- For firm ν from region-sector (d, i) with technique **r**, production follows

$$y(\nu,r) = A(\nu,r) \left[\ell(\nu,r)\right]^{\gamma^{iL}} \prod_{j=1}^{S} \left[m^{j}(\nu,r)\right]^{\gamma^{ij}},$$

with $\gamma^{iL} + \sum_j \gamma^{ij} = 1$.

• Given technique **r** and input costs $\{c^j(\nu, r)\}_{j=1}^{S}$, the unit production cost \propto

$$c_o^j(heta(
u)) \propto \min_r rac{1}{\mathcal{A}(
u,oldsymbol{r})} \cdot [w_d]^{\gamma^{iL}} \cdot \prod_{j=1}^S \left[c^j(
u,r)
ight]^{\gamma^{iJ}}$$

Input cost of j, $c^{j}(\nu, r)$, given by choosing most efficient supplier from $\Omega_{o}^{j}(\nu, r)$:

$$c^{j}(\nu,r) = \min_{o} \min_{\omega \in \Omega_{o}^{j}(\nu,r)} \tilde{c}^{j}(\nu,\omega)$$

- Each supplier $\omega \in \Omega_o^j$ drawn with a match-specific sourcing efficiency $z(\omega)$
- Input cost affected by (1) trade costs; (2) technology distance $||\theta(\nu) \theta(\omega)||$
- Effective unit input cost for firm ν sourcing from supplier ω :

[Assumption 1] (How the set of techniques is drawn):

- $\forall a > 0$, # of techniques with $A(\nu, r) \ge a$ follows Poisson with mean $[a/A_d^i]^{-\lambda}$
- Draw of $\theta(\omega)$ is from distribution Θ_o^j and independent of $z(\omega)$
- $\forall \tilde{z} > 0, \ \# \text{ of suppliers in } \Omega_o^j(\nu, r) \text{ with } z(\omega) \geq \tilde{z} \text{ follows Poisson with mean } \tilde{z}^{-\zeta}$

Proposition (Aggregation)

Under Assumption 1, the unit production cost for a firm with θ from (d, i), $c_d^i(\theta)$, follows a Weibull (inverse Frechet) distribution with the following CDF— $F_d^i(x; \theta) = 1 - e^{-(x/C_d^i(\theta))^{\lambda}}$, with $C_d^i(\theta)$ determined as the fixed point of

$$C_{d}^{i}(\theta) = \frac{\Xi^{i}}{A_{d}^{i}} [w_{d}]^{\gamma^{iL}} \prod_{j} \left(\sum_{o} \int [C_{o}^{j}(\tilde{\theta})\tau_{do}^{j}]^{-\zeta} [t(\theta,\tilde{\theta})]^{-\zeta} d\Theta_{o}^{j}(\tilde{\theta}) \right)^{-\frac{\gamma^{ij}}{\zeta}}$$

Moreover, firm-to-firm sourcing decision can be expressed with $\{C_d^i(\theta), \Theta_o^j\}$ analytically.

• exogenous Θ_o^j and common technology among firms \implies Caliendo and Parro (2015)

[Assumption 1] (How the set of techniques is drawn):

- <u>a</u> > 0, # of techniques follows Poisson with mean [<u>a</u>/Aⁱ_d]^{-λ} & each technique obtain A(ν, r) from Pareto with min support <u>a</u> and tail coefficient λ. Let <u>a</u> → 0.
- Draw of $\theta(\omega)$ is from distribution Θ_o^j and independent of $z(\omega)$
- $\forall \tilde{z} > 0$, # of suppliers in $\Omega_o^j(\nu, r)$ with $z(\omega) \ge \tilde{z}$ follows Poisson with mean $\tilde{z}^{-\zeta}$

Proposition (Aggregation)

Under Assumption 1, the unit production cost for a firm with θ from (d, i), $c_d^i(\theta)$, follows a Weibull (inverse Frechet) distribution with the following CDF— $F_d^i(x; \theta) = 1 - e^{-(x/C_d^i(\theta))^{\lambda}}$, with $C_d^i(\theta)$ determined as the fixed point of

$$C_{d}^{i}(\theta) = \frac{\Xi^{i}}{A_{d}^{i}} [w_{d}]^{\gamma^{iL}} \prod_{j} \left(\sum_{o} \int [C_{o}^{j}(\tilde{\theta})\tau_{do}^{j}]^{-\zeta} [t(\theta,\tilde{\theta})]^{-\zeta} d\Theta_{o}^{j}(\tilde{\theta}) \right)^{-\frac{\gamma^{ij}}{\zeta}}$$

Moreover, firm-to-firm sourcing decision can be expressed with $\{C_d^i(\theta), \Theta_o^j\}$ analytically.

• exogenous Θ_o^j and common technology among firms \implies Caliendo and Parro (2015)

[Assumption 1] (How the set of techniques is drawn):

- $\forall a > 0$, # of techniques with $A(\nu, r) \ge a$ follows Poisson with mean $[a/A_d^i]^{-\lambda}$
- Draw of $\theta(\omega)$ is from distribution Θ_o^j and independent of $z(\omega)$
- $\forall \tilde{z} > 0, \ \# \text{ of suppliers in } \Omega_o^j(\nu, r) \text{ with } z(\omega) \geq \tilde{z} \text{ follows Poisson with mean } \tilde{z}^{-\zeta}$

Proposition (Aggregation)

Under Assumption 1, the unit production cost for a firm with θ from (d, i), $c_d^i(\theta)$, follows a Weibull (inverse Frechet) distribution with the following CDF— $F_d^i(x; \theta) = 1 - e^{-(x/C_d^i(\theta))^{\lambda}}$, with $C_d^i(\theta)$ determined as the fixed point of

$$C_{d}^{i}(\theta) = \frac{\Xi^{i}}{A_{d}^{i}} [w_{d}]^{\gamma^{iL}} \prod_{j} \left(\sum_{o} \int [C_{o}^{j}(\tilde{\theta})\tau_{do}^{j}]^{-\zeta} [t(\theta,\tilde{\theta})]^{-\zeta} d\Theta_{o}^{j}(\tilde{\theta}) \right)^{-\frac{\gamma^{ij}}{\zeta}}$$

Moreover, firm-to-firm sourcing decision can be expressed with $\{C_d^i(\theta), \Theta_o^j\}$ analytically.

• exogenous Θ_o^j and common technology among firms \implies Caliendo and Parro (2015)

Given geography $\{\tau_{do}^{j}, L_{d}\}$, production technology $\{\gamma^{ij}, \gamma^{iL}, A_{d}^{i}, \lambda, \zeta, t(\cdot, \cdot), \phi(\cdot, \cdot)\}$, preference $\{\rho^{j}, \eta\}$, and ex-ante distribution of technology $\{\overline{\Theta}_{o}^{j}\}$,

A competitive equilibrium is (1) wages, prices and income $\{w_d, P_d, I_d\}$, (2) sales to firms and final goods $\{X_o^j(\theta), M_o^j(\theta)\}$, (3) production costs characterized by $\{C_o^j(\theta)\}$, (4) ex-post technology distribution $\{\Theta_o^j\}$, s.t.

- $\{C_o^j(\theta)\}$ are consistent with the input sourcing production decisions
- $\{\Theta_o^j\}$ are consistent with policy functions for adaptation, $\{C_o^j(\theta)\}$ and $\{\overline{\Theta}_o^j\}$
- Labor market clear; goods market clear by θ ; consumer income equals wage income plus profits.

• Existence and Uniqueness

Across firms within a (d-i) (due to differences in *θ*): higher technology proximity to region o ⇒ higher efficiency sourcing from o ⇒ more imports from o
 Proposition Firm-level corr. b/w technology and trade identifies incompat. cost t(·, ·)

- Across firms within a (d-i) (due to differences in θ
): higher technology proximity to region o ⇒ higher efficiency sourcing from o ⇒ more imports from o
 Proposition Firm-level corr. b/w technology and trade identifies incompat. cost t(·, ·)
- Across countries (due to trade costs): lower importing tariffs from o ⇒ more imports from o ⇒ choose technology closer to o proposition
 Countries' technology responding to trade shocks identifies adaptation cost φ(·, ·)

- Across firms within a (d-i) (due to differences in θ
): higher technology proximity to region o ⇒ higher efficiency sourcing from o ⇒ more imports from o
 proposition Firm-level corr. b/w technology and trade identifies incompat. cost t(·, ·)
- Across countries (due to trade costs): lower importing tariffs from o ⇒ more imports from o ⇒ choose technology closer to o proposition
 Countries' technology responding to trade shocks identifies adaptation cost φ(·, ·)
- Export-import correlation across trading partners (Li, Xu, Yeaple, and Zhao, 22)
- Extended gravity (Morales, Sheu and Zahler, 19)
- Normative:

- Across firms within a (d-i) (due to differences in θ
): higher technology proximity to region o ⇒ higher efficiency sourcing from o ⇒ more imports from o
 proposition Firm-level corr. b/w technology and trade identifies incompat. cost t(·, ·)
- Across countries (due to trade costs): lower importing tariffs from o ⇒ more imports from o ⇒ choose technology closer to o proposition
 Countries' technology responding to trade shocks identifies adaptation cost φ(·, ·)
- Export-import correlation across trading partners (Li, Xu, Yeaple, and Zhao, 22)
- Extended gravity (Morales, Sheu and Zahler, 19)

- Technology choice impose externalities on down-stream firms
- Firms from different countries/sectors tend to locate too distant from each other compared to social optimum Proposition

Trade and Technology Proximity: Country and Firm-level Evidence

- Patent and patent citations: universe of world patents (PATSTAT); measure technology proximity by the intensity of patent citation
- Trade: (Firm-level) China's customs data
- Trade shocks: applied and most-favored-nation (MFN) tariffs

Countries (d, o): grouped into 28 geo-political regions

Industries *j*: ISIC Rev 4 (country-level) or CIC-3 (firm-level)

Time t: 2000-2014 and aggregated to five 3-year periods

$$\text{In Citation}_{dojt} = \beta \ln(1 + \text{tariff}_{dojt}) + FE_{ojt}^{(1)} + FE_{doj}^{(2)} + FE_{djt}^{(3)} + \varepsilon_{dojt}$$

d: importer/citing region. o: exporter/cited region. j: ISIC4 sector. t: period

	In Citation _{dojt}				
	(1)	(2)	(3)	(4)	
ln $ au^{MFN}_{doit}$	-0.793***		-0.285**		
	(0.118)		(0.139)		
In τ_{dojt}		-0.822***		-0.296**	
-		(0.123)		(0.144)	
FE <i>o-j-t</i>	Yes	Yes	Yes	Yes	
FE <i>d-o-j</i>	Yes	Yes	Yes	Yes	
FE d-t	Yes	Yes			
FE <i>d-j-t</i>			Yes	Yes	
Observations	243010	243010	242799	242799	

Note: Standard errors clustered at the Importer(d)-Exporter(o)-Industry(j) level. Columns (1) and (3) report the reduced-form regression, and columns (2) and (4) report 2SLS using MFN tariffs as IV.

In Citation_{dojt} =
$$\beta \ln(1 + \operatorname{tariff}_{dojt}) + FE_{ojt}^{(1)} + FE_{doj}^{(2)} + FE_{djt}^{(3)} + \varepsilon_{dojt}$$

d: importer/citing region. o: exporter/cited region. j: ISIC4 sector. t: period

	In Citation _{dojt}				
	(1)	(2)	(3)	(4)	
ln $ au_{doit}^{MFN}$	-0.793***		-0.285**		
	(0.118)		(0.139)		
In τ_{dojt}		-0.822***		-0.296**	
-		(0.123)		(0.144)	
FE <i>o-j-t</i>	Yes	Yes	Yes	Yes	
FE <i>d-o-j</i>	Yes	Yes	Yes	Yes	
FE d-t	Yes	Yes			
FE d-j-t			Yes	Yes	
Observations	243010	243010	242799	242799	

Note: Standard errors clustered at the Importer(d)-Exporter(o)-Industry(j) level. Columns (1) and (3) report the reduced-form regression, and columns (2) and (4) report 2SLS using MFN tariffs as IV.

- Alternative mechanism: importing makes a product more 'visible', prompting learning
- Using d i o level data, we show it is input tariffs, rather than output tariffs that drive the results

$$\ln(\text{Import}_{\omega ot}) = \beta \text{Citation}_{\omega ot} + \gamma X_{i(\omega)ot} + FE_{\omega t}^{(1)} + FE_{\omega o}^{(2)} + FE_{ot}^{(3)} + \varepsilon_{\omega ot}$$

 ω : firm. o: origin region. t: period. $i(\omega)$: CSC-3 industry of firm ω

	$IMPORT_{\omega ot}$		$ln(Import_{\omega \mathit{ot}})$			
	(1)	(2)	(3)	(4)	(5)	(6)
	0.024***	0.023***	0.022***	0.054**	0.056**	0.051**
	(0.001)	(0.001)	(0.001)	(0.023)	(0.023)	(0.025)
FE ω-t	Yes	Yes	Yes	Yes	Yes	Yes
FE ω-ο	Yes	Yes	Yes	Yes	Yes	Yes
FE <i>o</i> - <i>t</i>	Yes	Yes		Yes	Yes	
X _{iot}		Yes			Yes	
FE <i>i-o-t</i> -province			Yes			Yes
Observations	9108423	8771074	9080046	250659	249939	220814

 $X_{i(\omega)ot}$: Industry-level input tariff $\ln(1 + \tau_{i(\omega)ot})$; (i, o, t)-level fixed effects

Note: * p < 0.10, ** p < 0.05, *** p < 0.01. Standard errors are clustered by firm.

Quantification

[Assumption 2]:

- Costs of technology incompatibility: $t(\theta, \tilde{\theta}) = \exp(\bar{t}(\theta \tilde{\theta})^2)$
- Adaptation costs: $\phi(ar{ heta}, heta) = 1 \exp(-ar{\phi}(ar{ heta}- heta)^2)$
- Ex-ante technology distribution $\{\overline{\Theta}_o^j\}$ each follows a normal distribution

Proposition (Tractability)

Under Assumption 1+2. The solutions to $\{C_o^j(\theta), \Theta_o^j\}$ are characterized by

- $\ln C_o^j(\theta) = k_{A,o}^j + m_A^j(\theta n_{A,o}^j)^2$
- $\Theta_o^j \sim \textit{Normal}(\mu_o^j, [\sigma_o^j]^2)$

up to a second order approximation for $\ln C_o^j(\theta)$ with respect to θ .

 $\{k_{A,o}^{j}, m_{A}^{j}, n_{A,o}^{j}, \mu_{o}^{j}, \sigma_{o}^{j}\}$ are coefficients that depend on parameters and $\{w_{d}\}$ only

• Used Data citation shares to measure tech. proximity between (d, i) and (o, j):

$$\Psi_{di}^{oj} = \frac{\# \text{ citations made to } (o, j) \text{ by } (d, i)}{\text{total } \# \text{ citations made by } (d, i)}$$

• In Model, for firm from (d, i) that chooses θ , the proximity between θ and Θ_o^j :

$$\psi_{di}^{oj}(\theta) \equiv \frac{\delta^{ij} H_o^j \cdot \mathrm{d}\Theta_o^j(\theta)}{\sum_{o',j'} \delta^{ij'} H_{o'}^{j'} \cdot \mathrm{d}\Theta_{o'}^{j'}(\theta)},$$

 H_o^j : total number of citations made to (o, j) in data δ^{ij} : share of citations made to industry j by industry i in data

• Aggregating $\psi_{di}^{oj}(\theta)$ across $\theta \Rightarrow$ model counterpart of citation shares Ψ_{di}^{oj}

Parameters	Descriptions	Value	Target/Source
A. Externally	calibrated		
$\gamma^{ij}, \gamma^{iL}, \rho^{j}$	IO structure and consumption share	-	WIOT; <i>N</i> = 15, <i>S</i> = 19
L _d	Labor endowment	-	PWT
$\eta,\zeta-1$	Trade elasticity	4	Literature
B. Exactly identified			
ī	Params in compatibility cost	0.05	Firm-level Import-citation corr: 0.022
$ar{\phi}$	Params in adaptation cost	0.005	Country-level citation-tariff elas.: -0.296
$ au_{do}^{j}, au_{do}^{Uj}$	Iceberg trade costs		Bilateral trade shares
C. Nonlinear	Least Square		
$ar{\mu}_o^j,ar{\sigma}^j$	Dist. of endowment technology	-	Bilateral citation shares

Figure 1: Mean Technology Directions Ex-ante (circle) v.s Ex-post (dot)

Table 1: Bilateral Citation Shares: Model v.s Data

	Citation Share in Data		
Citation Share in Model	(1)	(2)	(4)
at Ex-post Tech. Dist.	0.855		
	(0.002)		
with Identical Tech.		0.657	
		(0.003)	
at Ex-ante Tech. Dist.			0.709
			(0.001)
Fixed Effects	-	-	-
Observations	81,225	81,225	81,225
Adjusted R^2	0.688	0.303	0.377

Note: Each column reports the regression of the citation share in data on model-implied citations. Column (1) uses the calibrated ex-post technology distribution $\{\mu_o^i, \sigma^i\}$. Column (2) restricts to the case where $\mu_o^j = 0$ and $\sigma^j = 0$ for all (o, j). Column (3) restricts the technology distribution to the ex-ante distribution $\{\bar{\mu}_o^i, \bar{\sigma}^j\}$.

		Tech Compati Costs (T)		
Country/Region	Tech Compat. Costs (T)	for Foreign Inputs		
BRA	2.64	0.66		
CAN	2.31	0.96		
CEU	2.58	1.03		
CHN	6.60	2.19		
IND	2.75	0.72		
IDN	3.17	1.06		
JPN	3.04	1.25		
KOR	3.23	1.52		
MEX	2.96	1.26		
OCE	2.11	0.87		
ROW	3.08	1.54		
RUS	2.20	0.57		
TUR	2.60	0.83		
USA	2.27	0.67		
WEU	2.20	0.55		
World	3.41	1.16		

Table 2: Technology Compatibility Costs as Shares of GDP

Embargo: increase cost of exporting to Chinese firms to infinity for industry *Computer, electronic and optical products*

Embargo Origin	Share of	Δ Cites from	Endo. Tech. ($\Delta \ln U$ %)		Δ Cites from Endo. Tech. ($\Delta \ln U$ %) Fixed Tech. ($\Delta \ln$		ch. ($\Delta \ln U$ %)
	imports (%)	CHN to USA (%)	CHN	USA	CHN	USA	
USA Only	2.1	-1.321	-0.016	-0.004	-0.010	-0.002	
All but Russia	99.9	-50.516	-0.795	-0.081	-0.419	-0.016	

- Technology decoupling amplifies the losses from the embargo
- The U.S. also lose from technology decoupling

Decoupling and Re-alignment

Note: Dots are the ex-post mean in the baseline equilibrium, and stars are the equilibrium with the embargo. Blue indicates countries with distance to the USA relative to China decreases by more than 5%.

Table 3: Mechanism Decomposition

	$\Delta \ln U_{CHN}$ (%)	$\Delta \ln U_{USA}$ (%)
No Response of Direction of Technology	-0.419	-0.016
+ Response from the targeted Chinese Sector	-0.576	-0.030
+ Response from All Chinese Sectors	-0.692	-0.069
+ Response from All Countries	-0.795	-0.081

- A GE model of trade with technology compatibility between firms and suppliers
- Empirical evidence
 - firm-level: positive correlation between citations and imports from same country
 - cross-country: bilateral tariff negatively affects intensity of bilateral citations
- Countries' trade patterns and choice of technology mutually shape each other
- Endogenous technology response amplifies the welfare loss of a trade conflict

Definition

Given $\{w_d\}$, a technology equilibrium is $\{C_d^i(\theta), \Theta_d^i\}$ that is consistent with firms' technology choice and sourcing decisions. That is, $\{C_d^i(\theta), \Theta_d^i\}$ solve

$$\begin{split} \boldsymbol{C}_{d}^{i}(\boldsymbol{\theta}) &= \frac{\Xi^{i}}{A_{d}^{i}} [\boldsymbol{w}_{d}]^{\gamma^{iL}} \prod_{j} \left(\sum_{o} \int [\boldsymbol{C}_{o}^{j}(\tilde{\boldsymbol{\theta}}) \tau_{do}^{j}]^{-\zeta} [\boldsymbol{t}(\boldsymbol{\theta}, \tilde{\boldsymbol{\theta}})]^{-\zeta} \, \mathrm{d}\boldsymbol{\Theta}_{o}^{j}(\tilde{\boldsymbol{\theta}}) \right)^{-\frac{\gamma^{y}}{\zeta}},\\ \boldsymbol{\Theta}_{d}^{i}(\boldsymbol{\theta}) &= \int_{\bar{\boldsymbol{\theta}} \in \mathcal{T}} \mathbb{I}[\boldsymbol{g}_{d}^{i}(\bar{\boldsymbol{\theta}}) = \boldsymbol{\theta}] d\bar{\boldsymbol{\Theta}}_{d}^{i}(\bar{\boldsymbol{\theta}}), \end{split}$$

where $g_d^i(\bar{\theta})$ is the policy function for the technology choice

 $\max_{\theta} \left[1 - \phi(\bar{\theta}, \theta) \right] \mathbb{E} \Pi_o^j(\theta).$

Assumption

• Costs of technology incompatibility: $t(\theta, \tilde{\theta}) = \exp(\bar{t}(\theta - \tilde{\theta})^2)$

• Adaptation costs:
$$\phi(\bar{\theta}, \theta) = 1 - \exp(-\bar{\phi}(\bar{\theta} - \theta)^2)$$

Proposition

- Assume $\{\overline{\Theta}_{d}^{i}\}\$ have bounded support that is contained in [-M, M] for some M > 0 and have associated density functions $\{\overline{\varsigma}_{d}^{i}\}\$. If $\zeta \overline{t} < 1/M^{2}$, then there exists an equilibrium with firms' technology choice $\{g_{d}^{i}\}\$ being continuously differentiable functions. This first-order condition has a unique solution.
- If, in addition, $\bar{t} < \frac{1}{2M}$ and $\bar{\phi} > \phi$, where $\phi > 0$ is a constant determined by parameters $(\zeta, \bar{t}, \lambda, M, \gamma^{iL})$ as detailed in the proof, then such an equilibrium is unique.

Suppose firms in (d, i) have an endowment technology of $\bar{\theta}_d^i$ with probability 1 but a zero-measure of set of firms in (d, i), denoted by ν , have an endowment of $\bar{\theta}(\nu)$. Then in response to a change in $\bar{\theta}(\nu)$ that reduces $\|\bar{\theta}(\nu) - \theta_o^j\|$,

- Firm ν moves closer to θ_o^j , namely $\|\theta_d^i(\nu) \theta_o^j\|$ decreases
- Firm ν is more likely to purchase from (o, j)
- $\Delta \log \left(\chi^{ij}_{do}(\nu) / \chi^{ii}_{dd}(\nu) \right) = -\zeta \bar{t} \cdot \Delta \| \theta^i_d(\nu) \theta^j_o \|$

◀ Back

Consider a country-sector (d, i) that is small in the sense that its input and output account for a negligible share of all countries and sectors, including sectors in country d. Then after an \times % increase in the cost of (d, i) importing from (o, j):

• The distance between θ_d^i and θ_o^j change by:

$$\Delta \|\theta_d^i - \theta_o^j\| = -\frac{\zeta \omega^i \gamma^{ij} \bar{\chi}_{do}^{ij} \|\theta_o^j - \vartheta_d^{ij}\|}{1 + t \zeta \omega^j \sum_{j',o'} \gamma^{ij'} \bar{\chi}_{do'}^{ij'} \|\theta_{o'}^{j'} - \vartheta_d^{ij'}\|} \times \frac{\theta_d^i - \theta_o^j}{\theta_o^j - \vartheta_d^{ij}} \times x,$$

where $\vartheta_d^{ij} \equiv \sum_m \bar{\chi}_{dm}^{ij} \theta_m^i$ is the average location of the suppliers of (d, i) that is in sector j.

• $\|\theta_d^i - \theta_o^j\|$ increases relative to the expenditure-share weighted distance between θ_d^i and $\theta_{o'}^j$ across o' = 1, ..., N increases. More precisely,

$$\Delta \|\theta_d^i - \theta_o^j\| - \sum_{o'} \bar{\chi}_{do'}^{ij} \Delta \|\theta_d^i - \theta_{o'}^j\| = \frac{\zeta \omega^i \gamma^{ij} \bar{\chi}_{do}^{ij} \|\theta_o^j - \vartheta_d^{ij}\|}{1 + t \zeta \omega^i \sum_{j',o'} \gamma^{ij'} \bar{\chi}_{do'}^{ij} \|\theta_{o'}^{i'} - \vartheta_d^{ij'}\|} \times x > 0$$

Consider a closed economy with multiple sectors and each sector with an ex-ante endowment location $\bar{\theta}^i, i = 1, ..., N$.

• The marginal impact of increasing θ^i on the social welfare, $\frac{\Delta \ln(U)}{\Delta \theta^i}$, is given by

where the three terms capture the income effect, the price effect in sector *i*, and the price effect in all other sectors; $\tilde{\gamma}^{ij}$ is the general equilibrium impact of sector *j* price on sector *i* price, defined as $\tilde{\gamma}^{ij} \equiv \sum_{m} \Omega^{im} \gamma^{mj}$, where Ω^{im} is the (i, m)-th element of $(\mathbb{I}_{NS \times NS} - \Gamma)^{-1}$.

If sectors have the same weights in the final consumption and symmetric input-output structure, i.e., for all i ≠ j ≠ j', α_i = α_j, γⁱⁱ = γ^{ij} and γ^{ij} = γ^{ij'} = γ^{ij'}, then the equilibrium ||θⁱ − θⁱ|| is too small compared to social optimum. In other words, firms under-invest in technological adaption.

Consider an open economy with one sector with roundabout production and two symmetric countries, country 1 and 2. Assume WOLG that in equilibrium, $\theta_2 < \theta_1$. Then the effect of a move of country 2's technology towards country 1 from the equilibrium on welfare is:

$$\frac{\Delta \ln U_2}{\Delta \theta_2} = \frac{\frac{1}{\eta} \exp(-\frac{1}{2}\phi(\theta_2 - \bar{\theta}_2)^2)}{1 - \frac{1}{\eta} \exp(-\frac{1}{2}\phi(\theta_2 - \bar{\theta}_2)^2)} \phi(\bar{\theta}_2 - \theta_2) + t \frac{1 - \gamma^L}{\gamma^L} \bar{\chi}_{12}(\theta_1 - \theta_2) > 0$$
$$\frac{\Delta \ln U_1}{\Delta \theta_2} = t \frac{1 - \gamma^L}{\gamma^L} \bar{\chi}_{12}(\theta_1 - \theta_2) > 0$$

Back

$$\text{In Citation}_{doit} = \beta_1 \ln \tau_{doit}^{MFN, Input} + \beta_2 \ln \tau_{doit}^{MFN} + FE_{ot} + FE_{doi} + FE_{dit} + \epsilon_{doit},$$

		In(Citation _{doit})		
		(1)	(2)	(3)
	$\ln \tau_{\rm doit}^{\rm MFN, \rm Input}$	-0.640**		-3.233**
itation , the total citation made by		(0.315)		(1.348)
d i) region a in period t	$\ln au_{doit}^{MFN}$		-0.218	1.243**
$\frac{MFN_{Input}}{MFN_{Input}}$ and $\frac{MFN_{Input}}{MFN_{Input}}$			(0.149)	(0.630)
doit and t _{doit} the ad-valorem	FE <i>o</i> - <i>t</i>	Yes	Yes	Yes
butputs of industry <i>i</i> , respectively.	FE <i>d-o-i</i>	Yes	Yes	Yes
	FE d-i-t	Yes	Yes	Yes
	Observations	247080	243271	243271

Note: Standard errors are clustered at the *d-o-i* level.